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Overview

Testing hypotheses I: concepts of Bayesian and orthodox (classical) testing

Testing hypotheses II: array of orthodox tests ...
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Testing hypotheses: Basic ideas by example

Consider tossing two similar coins:
coin 0: p(heads)=0.5 (fair coin)
coin 1: p(heads)=0.7 (unfair coin)

Problem: somebody picks up one of the coins, tosses it 10 times in a row and tells
you the number of heads they got. On the basis of the number of heads alone, your
task is to decide whether it was the fair (0) or the unfair coin (1)

How do you decide?

(FYI: For those wondering what coin this is, it’s a gold Double Eagle $20 coin from
1849 and it’s worth a pretty penny)
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Testing hypotheses: Basic ideas by example

More formal:
Hypothesis H0: coin 0 was tossed
Hypothesis H1: coin 1 was tossed

Simple hypothesis: we know which probability distribution to use

• both alternatives are simple to express
• Binomial distribution: P (X = x) =

(
n
k

)
pk(1 − p)n−k, X number of heads,

likelihoods P (x|H0)?, P (x|H1)?

x 0 1 2 3 4 5 6 7 8 9 10

coin 0 .0010 .0098 .0439 .1172 .2051 .2461 .2051 .1172 .0439 .0098 .0010

coin 1 .0000 .0001 .0014 .0090 .0368 .1029 .2001 .2668 .2335 .1211 .0282

Does that really help? In the end we would rather just like to know P (H0|x) and
P (H1|x) after observing the number of heads (“posterior probabilities”)
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Testing hypotheses: Basic ideas by example

Use Bayes’ theorem for “inverting” probability (for generative model H0)

P (H0|x) =
P (x|H0)P (H0)

P (x)

. . . and similarly for P (H1|x)

Ok, but what is P (H0) (“a priori probability”)?

• we may come up with a value assuming a certain behaviour for the person
choosing which coin to toss, but let’s assume they are fair and unbiased ...
⋆ so let’s just go for the simplest reasonable assumption P (H0) = P (H1) = 0.5
and call it our ‘null hypothesis’

And what is P (x)? Probability of the data x?

• Law of total probability: P (x) =
∑

k P (x|Hk)P (Hk), so the evidence is the
probability of observing the data, considering all possible hypotheses
{Hk} exhaustive and mutually exclusive
P (x) = P (x|H0)P (H0) + P (x|H1)P (H1)
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Testing hypotheses: Basic ideas by example
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Note: here H0(x) +H1(x) = 1

This is a super-idealized scenario. We know
all possible hypotheses, which is hardly ever
the case!

• Typically, H0 (“null hypothesis”) tested
against alternative hypothesis H1 but
H1 ̸= ¬H0, as it does not cover all possi-
ble alternative hypotheses to H0

• Since H1 is not a complete negation of
H0, we cannot really employ the law of
total probability for P (x) :(

Next best thing: look at the (posterior) odds ratio and then the probability

of the data P (x) cancels out: P (H0|x)
P (H1|x)

= P (x|H0)
P (x|H1)

P (H0)
P (H1)

= ratio of likelihoods ×
ratio of prior probabilities :)
• The posterior odds ratio provides a direct comparison between the hypotheses
without needing to compute the evidence P (x)

• the ratio of likelihoods above is called the Bayes factor
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Testing hypotheses: Basic ideas by example

The ratio of a priori probabilities cancels out (we set both to 0.5), so evaluating the

likelihood ratio P (x|H0)
P (x|H1)

gives us:

x 0 1 2 3 4 5 6 7 8 9 10
P (x|H0) .0010 .0098 .0439 .1172 .2051 .2461 .2051 .1172 .0439 .0098 .0010
P (x|H1) .0000 .0001 .0014 .0090 .0368 .1029 .2001 .2668 .2335 .1211 .0282
P (x) .0005 .0050 .0227 .0631 .1209 .1745 .2026 .1920 .1387 .0654 .0146

P (H0|x) .9940 .9861 .9681 .9287 .8480 .7051 .5061 .3052 .1584 .0746 .0334
P (H1|x) .0060 .0139 .0319 .0713 .1520 .2949 .4939 .6948 .8416 .9254 .9666

P (x|H0)
P (x|H1)

165.4 70.88 30.38 13.02 5.579 2.391 1.025 .4392 .1882 .0807 .0346

To decide between H0 and H1, choose the hypothesis with larger posterior
probability!

Choose H0 if . . .

P (H0|x)
P (H1|x)

=
P (x|H0)

P (x|H1)

P (H0)

P (H1)
> 1

or equivalently for the (marginalized) likelihood ratio P (x|H0)
P (x|H1)

> c, where the

constant c depends on the a priori model probabilities
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Testing hypotheses: Basic ideas by example

In our toy problem, what are the consequences of using c = 1 as (a somewhat
arbitrary) threshold?

• H0 (fair coin) is accepted as long as X ≤ 6, and is rejected in favor of H1

(unfair coin) for X > 6, where X is the number of heads tossed

There are two possible ways to be wrong . . . Can you confirm the numbers?

• reject H0 when it is true (type I error, “false positive”)

P (rejectH0|H0) = P (X > 6|H0) =

10∑
x=7

P (x|H0) = 0.17

• accept H0 when it is false (type II error, “false negative”)

P (acceptH0|H1) = P (X ≤ 6|H1) =

6∑
x=0

P (x|H1) = 0.35

Note that one error is not just the complement of the other
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Interlude: Wikipedia on the naming of things . . .

A type I error (false positive, error of the first kind) is the incorrect rejection of a
true null hypothesis. Usually a type I error leads one to conclude that a supposed
effect or relationship exists when in fact it doesn’t. Examples of type I errors
include a test that shows a patient to have a disease when in fact the patient does
not have the disease, a fire alarm going on indicating a fire when in fact there is
no fire, or an experiment indicating that a medical treatment should cure a disease
when in fact it does not.

A type II error (false negative, error of the second kind) is the failure to reject
a false null hypothesis. Examples of type II errors would be a blood test failing
to detect the disease it was designed to detect, for a patient who really has the
disease; a fire breaking out and the fire alarm does not ring; or a clinical trial of a
medical treatment failing to show that the treatment works when really it does.
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Terminology

The significance level, α, is the probability of making a type I error

• this is like a threshold you set for how willing you are to risk making a false
positive error

The power of a test is 1− β where β is the probability of making a type II error

• e.g. in a medical test, high power means the test is good in detecting disease

A test statistic is the statistic that is used for deciding whether to accept (or reject)
the null hypothesis H0

• in our previous example with the coins, this was the odds ratio (of the posteriors)

rejection region is the set of parameter values of the test statistic for which the
null hypothesis, H0 is rejected

• its complement is the acceptance region

null distribution: the probability distribution of the test statistic assuming the null
hypothesis is true
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Terminology (for the coin example)

test statistic used:

P (H0|x)
PH1|x

> 1
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Different approaches to Hypothesis testing
Bayesian Hypothesis Testing:
• Compares hypotheses by calculating their posterior probabilities given the data
• Requires knowledge of the full probability distribution for both the null (H0) and
alternative (H1) hypotheses

• Often used when prior information is available or when integrating evidence
across different models

Neyman-Pearson (NP) Paradigm:
• Focuses on rejecting or not rejecting the null hypothesis (H0) in favor of an
alternative (H1)

• Works with simple hypotheses, where the probability distribution is fully specified,
but can be extended to handle composite hypotheses

• The NP approach is best suited to scenarios where we want to control the
probability of making a type I error

Fisher’s Approach to Hypothesis Testing (Frequentist):
• Emphasizes testing H0 against an unspecified alternative hypothesis
• Focuses on p-values as a measure of evidence against H0

• Only requires the distribution of the test statistic under H0

• Makes the problem asymmetric by focusing on the null hypothesis alone
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Neyman-Pearson lemma

In the Neyman-Pearson paradigm, the specification of priors is not necessary

• Neyman-Pearson lemma:
Suppose H0 and H1 are simple hypotheses. A likelihood ratio test rejects H0

whenever the likelihood ratio is less than c at significance level α. Then, for any
other test of H0 with a significance level ≤ α, its power against H1 is at most
the power of this likelihood ratio test

Many test statistics are possible...

The likelihood ratio test is optimal, meaning it has the largest discriminating power

• unfortunately, problems are rarely formulated as alternatives between simple
hypotheses

How does one select an appropriate test statistic for more complicated problems?

• it depends on the specific context and the hypotheses being tested
• different disciplines often rely on different types of tests
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Choosing the null hypothesis

Usually, H0 is chosen to indicate that “nothing special is going on”

• This means that H0 represents a state of no effect or no difference, serving as a
baseline for comparison

The test statistic under the null hypothesis needs to be known

• a test statistic is a standardized value (calculated from the sample data during
the hypothesis test)

• knowing its distribution under H0 allows us to determine the significance of the
observed data

Additional considerations:

• In science, simpler hypotheses are preferred because they are more easily testable
(potentially falsifiable)

• Occam’s razor: other things being equal, the simplest explanations should be
preferred over more complex ones

• Popper’s falsification principle: a hypothesis/theory must be falsifiable for it to
hold any (scientific) value

• Gravity of errors! Consider the consequences of Type I and Type II errors
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The p-value

The p-value is the probability, given H0 is true, of obtaining data (or a value of the
statistic) at least as extreme as the one observed, or more extreme

• In other words, it quantifies how surprising or extreme the observed data is under
the null hypothesis

p-value often used to characterize the significance level of a test

• The smaller the p-value, the stronger the evidence against the null hypothesis

It is important to note that ...:

• the p-value is not the probability that H0 is true
• the p-value is not the probability of observing the data that we have
⋆ both of these are common sources of misinterpretation in hypothesis testing!

Consider the coin tossing example: if 8 heads are observed, what is the p-value?
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The trials and tribulations of the p-value

p-values often used for selection:

• common thresholds for p-values are 0.05 (5%), 0.01 (1%), and 0.001 (0.1%)
• a p-value less than 0.05 typically indicates strong evidence against the null
hypothesis, leading to its rejection *

* Beware of p-hacking!:

• (also known as data dredging, data fishing, data snooping or data butchery)
• p-hacking refers to manipulating data or analyses until non-significant results
appear significant

• it involves employing loosely defined or multiple hypotheses or data manipulation
until a p-value less than 0.05 is obtained

• it undermines the integrity of scientific research and remains a problem in today’s
‘publish or perish’ academic culture
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Bayesian hypothesis testing – model selection

In the Bayesian context, hypotheses/models are not rejected or accepted but rather
alternative models are compared

For both alternatives, one must know the generative models (and their PDFs)

We have already encountered the odds ratio

P (M1|x)
P (M2|x)

=
P (x|M1)

P (x|M2)

P (M1)

P (M2)

Typically, models depend on parameters θ. Using the law of total probability, we
can write

P (M1|x)
P (M2|x)

=

∫
P (x|θ1,M1)P (θ1|M1) dθ1∫
P (x|θ2,M2)P (θ2|M2) dθ2

P (M1)

P (M2)
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Bayesian model selection – what is what?

P (M1|x)
P (M2|x)

=

∫
P (x|θ1,M1)P (θ1|M1) dθ1∫
P (x|θ2,M2)P (θ2|M2) dθ2

P (M1)

P (M2)

P (x|θ,M) is the likelihood: the probability of the data given the parameters and
model

P (θ|M) is the prior of the parameters: the probability distribution of the parameters
for model M , before observing the data

P (M) is the prior of the model: our initial belief in the model, before observing
the data

If there is no reason to prefer one model over the other, then assign equal weight
to their priors, P (M1) = P (M2), and the last ratio above (in blue) cancels out. In
that case, the odds ratio = Bayes factor (ratio of marginal likelihoods)

P (x|M) =
∫
P (x|θ,M)P (θ|M)dθ is the so-called marginal likelihood or evidence

of the observed data, given the model

Ratios > 10 are considered strong evidence for preferring one model/proposition
over the other (but the exact threshold depends on the circumstances)
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Comparing models when tossing coins – again
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Now let’s toss four coins of unknown fairness level, assuming different priors

Again, 10 tosses are performed, and the total number of heads x is recorded

coin 0 is a fair coin with pbin = 0.5. Here, pbin is the probability of the underlying
binomial distribution describing the tossing
• corresponds to prior probability density P(pbin) = δ(pbin − 0.5), where δ stands
for a δ function

• can be approximated by a Beta-distribution → see plot above
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Comparing models when tossing coins – again

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Priors on binomial probability (normalized)

p_binomial

B
et

a(
p_

bi
no

m
ia

l |
 a

,b
)

(a,b)
(14.1,6.6)
(1,1)
(1E6,1E6)
(2.3E6,1E6)

Coins are assigned priors with the following normalized continuous probability
densities P(pbin)
• coin 0: P(pbin) = δ(pbin − 0.5) → precisely known parameter
• coin 1: P(pbin) = δ(pbin − 0.7)
• coin 2: P(pbin) = Beta(pbin|α = 14.1, β = 6.6) → falls around pbin ≈ 0.7
• coin 3: P(pbin) = 1 → no prior knowledge at all

All coins are tossed equally likely

Always comparing pairs of coins: which one was tossed? What is the evidence?
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Comparing models when tossing coins – again

number of heads x 0 1 2 3 4 5 6 7 8 9 10
evidence coin 0 .001 .010 .044 .117 .205 .246 .205 .117 .044 .010 .001

evidence coin 1 .000 .000 .001 .009 .037 .103 .200 .267 .233 .121 .028
log(Bayes 1/0) -2.218 -1.851 -1.483 -1.115 -.747 -.379 -.011 .357 .725 1.093 1.461

evidence coin 2 .000 .002 .009 .027 .065 .121 .182 .218 .201 .130 .045
log(Bayes 2/0) -.677 -.721 -.706 -.633 -.500 -.307 -.051 .270 .659 1.123 1.667

evidence coin 3 .091 .091 .091 .091 .091 .091 .091 .091 .091 .091 .091
log(Bayes 3/0) 1.971 .969 .316 -.110 -.353 -.432 -.353 -.110 .316 .969 1.971

Taking the assumed fair coin 0 as baseline one obtains

• the unfair coin 1 is the preferred model when observing a large number of heads
• similarly, the more “flexible” coin 2
• the “ultra flexible” coin 3 is preferred only in extreme cases

Remarkably, coin 3 is able to represent the data best as shown by the likelihoods
below:

number of heads x 0 1 2 3 4 5 6 7 8 9 10
P (x|H0) .001 .010 .044 .117 .205 .246 .205 .117 .044 .010 .001
P (x|H3, p = x/10) 1.000 .387 .302 .267 .251 .246 .251 .267 .302 .387 1.000

• this is a consequence of the fact that p can be adjusted to match the observations
• the presence of the free parameter p is penalized when calculating the evidence
• preference to simpler model reasonably representing the data → Occam’s razor
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Comparing models when tossing coins – again

number of heads x 0 1 2 3 4 5 6 7 8 9 10
evidence coin 0 .001 .010 .044 .117 .205 .246 .205 .117 .044 .010 .001

evidence coin 1 .000 .000 .001 .009 .037 .103 .200 .267 .233 .121 .028
log(Bayes 1/0) -2.218 -1.851 -1.483 -1.115 -.747 -.379 -.011 .357 .725 1.093 1.461

evidence coin 2 .000 .002 .009 .027 .065 .121 .182 .218 .201 .130 .045
log(Bayes 2/0) -.677 -.721 -.706 -.633 -.500 -.307 -.051 .270 .659 1.123 1.667

evidence coin 3 .091 .091 .091 .091 .091 .091 .091 .091 .091 .091 .091
log(Bayes 3/0) 1.971 .969 .316 -.110 -.353 -.432 -.353 -.110 .316 .969 1.971
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