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Overview

Z-Test for One Sample

Student’s T-Test (One-Sample and Two-Sample Cases)

Testing for Correlation (Spearman Rank Test)

Chi-Squared Test

Hypergeometric Distribution and Fisher’s Exact Test

Kolmogorov-Smirnov (KS) Test

Wald-Wolfowitz Runs Test

Pros and Cons of Classical Hypothesis Testing
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(Gaussian) Z-test, one sample

Tests whether the mean of a Gaussian population deviates from the reference value
µ0

• uses a sample of n data points xi

• assumes the variance σ2 of the underlying population is known
• Hypothesis H0: xi are drawn from a normal distribution with variance σ2 and
mean µ0

The test statistic is

Z =
x̄− µ0

s
where s = σ/

√
n is the standard error of the sample mean x̄

Under the null hypothesis Z is normally distributed: Z ∼ N(0, 1)

Applicable whenever the test statistic can be approximated by a normal distribution
(or when it is exactly normal)

• approximation often valid for large sample sizes due to the central limit theorem
• when the variance σ2 is unknown, other tests are more appropriate
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Example: Z-test (one-sided)

A random variable X is normally distributed with variance σ2 = 9 and unknown
mean µ. You have n = 10 samples available, drawn from the distribution of X

Test the hypothesis µ = µ0 = 24 against the alternative hypothesis µ > µ0 with a
significance level α = 0.05
• Null hypothesis: H0 : µ = 24
• Alternative hypothesis: H1 : µ > 24

The Z-test statistic is given by:

Z =
x̄− µ0

σ/
√
n

The goal is to determine whether the sample data provides enough evidence to
reject H0 in favor of H1

The significance level α = 0.05 means that there is a 5% risk of rejecting the null
hypothesis when it is actually true

→ blackboard

Z-test, one sample ▷ TOC ▷ FIN 2.2



Example: Z-test (two-sided)
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The black curve is the power
of the Z-test for the given ex-
ample, the blue curve for the
two-sided test for µ ̸= µ0

Exercise:

• reproduce the result for the
power of the two-sided test!

• power is the probability of
correctly rejecting H0 when
it is false, i.e. 1− β

• what is the range of accep-
tance of X̄?
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Student’s t-test

William Sealy Gosset (1876–1937)

Worked as chemist with the Guiness
brewery in Dublin; quality control,
improvement of quality, growing barley

Published under pseudonym “Student”

t-test designed having small sample sizes in mind
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Student’s t-test: one-sample case

Tests whether the mean of a Gaussian population deviates from reference value µ0

• Given a sample of n data points xi

• H0: xi drawn from a normal distribution of unknown variance σ2 and mean µ0

• estimate of variance derived from the sample

Test statistic t = x̄−µ0
s , where s = σ̂/

√
n is the standard error of the sample mean
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Student’s t-test: one-sample case

Note the difference to Z-test: σ̂ is the sample standard deviation

the test statistic t follows a t-distribution with ν = n − 1 degrees of freedom. Its
PDF is given by:

P (t; ν) =
Γ
(
ν+1
2

)
√
νπ Γ

(
ν
2

) (1 + t2

ν

)−ν+1
2

• where Γ is the gamma function

for large n (or ν), P (t; ν) approximates the normal distribution

its expectation value is always zero

the variance is ν
ν−2 for ν > 2. For ν ≤ 2, the variance is infinite or undefined,

reflecting the heavier tails of the t-distribution compared to the standard Gaussian
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Student’s t-distributions for various degrees of freedom (DF)
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Note “wings” wider than for normal distribution for small number of DFs

• additional uncertainty coming from the estimation of the unknown variance
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Comment on t-distribution

The t-distribution is the distribution of the random variable

T =
X√
Y/ν

where X and Y are independent random variables. ν is a positive integer – the
number of degrees of freedom (NB: difference to n in definition of t)

X ∼ N(0, 1) and Y ∼ χ2
ν

The ratio T gives a measure of the deviation of the sample mean from the
hypothesized mean in terms of the standard error, considering the variability in the
sample

shows that the t-distribution accounts for additional uncertainty due to the estima-
tion of the sample variance, especially in small samples

For a sample drawn from a normal distribution mean and variance are independent
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Comment on t-distribution

For a sample drawn from a normal distribution mean and variance are independent

• generate a large number of random samples, calculate the sample means and
variances, and then check for correlation between them:

# quick check in R for correlation which is a necessary

# while not sufficient condition for independence

a <- matrix(rnorm(10*10000), nrow=10, ncol=10000)

m <- apply(a,2,mean)

v <- apply(a,2,var)

cor.test(m,v)
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Comment on t-distribution

From that one may get an idea how Gosset came up with the t-distribution:

• under H0, the distance x− µ0 is a normally distributed random variable
• the natural unit to use when measuring this difference is the standard deviation,
which represents the width of the normal distribution

• knowing that the estimated distance and the width are independent random
variables allows one to derive the t-distribution

As a side note: the distribution of the ratio of two random variables is not just the
ratio of their two distributions...

• it depends on how these two variables interact, especially around their means,
variances, and the relationship between them

• more specifically, the distribution of the ratio is obtained by changing variables,
which (as we previously saw) involves integrating the joint probability distribution
of X and Y over the appropriate range
⋆ this requires evaluating convolutions and is not as simple as taking the ratio
of the two PDFs
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Exercise: testing a batch of batteries during production

A manufacturer of batteries wants to test whether a certain batch – say – of 1000
batteries complies to quality standards. The batteries are supposed to hold a charge
of 200 mAh. The batch is considered not to quality standards if the mean charge
of the batteries likely deviate too much from the nominal value. Since the batteries
are emptied during the testing only 10 batteries can be tested. Their charges x were
measured to x ∈ {177, 194, 209, 228, 229, 235, 241, 244, 244, 287} mAh. Conduct a
two-sided t-test to decide whether the batch is likely following quality standards or
needs to be rejected on a significance level α = 0.05.

Program the the t-test yourself (you are allowed to use the R-functions for the
t-distribution t())!

What is the t- and p-value of the measured sample?

What are the intervals of non-rejection in x and t?

Is the batch acceptable or not?

Compare with the result of the R-function t.test()!
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Student’s t-test: two-sample case

n data xi and m data yi are from two different Gaussians, however, with σx = σy

Test statistic t = x̄−ȳ

sp
√

1
n+

1
m

Here sp is the pooled standard deviation

sp ≡
√∑

(xi − x̄)2 +
∑

(yi − ȳ)2

n+m− 2

Note the difference to the sample standard deviation σ̂

t follows a t-distribution with n + m − 2 degrees of freedom (-2, because we
calculate two means from the data)

There is a generalistation for the case σx ̸= σy → Welch test

In R, t.test(...) implements it all (one- or two-sample, paired-data, one- or
two-tailed, equal or unequal variances)
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Testing for correlation: Spearman rank test

Correlations are not necessarily linear (assumption implicit to the Pearson product
moment coefficient)

The Spearman rank correlation coefficient is a measure of correlation, measuring
how well a monotonuous function can decribe the relation among two variables

Coefficient derived from relative ordering of pairs of N observations (xi, yi)

The Spearman rank correlation coefficient is defined as

rs = 1− 6

∑N
i=1(rank(xi)− rank(yi))

2

N3 −N

The rank is the position in a sorted list of values, see rank() in R

t-test ▷ TOC ▷ FIN 3.10



Testing for correlation: Spearman rank test

For not too small samples (N > 30, or so), the test statistic

tr = rs

√
N − 2

1− r2s

follows a Student’s t-distribution with ν = N − 2 degrees of freedom

# R Example:

# Sample data

x <- c(10, 20, 30, 40, 50)

y <- c(15, 25, 35, 45, 55)

# Using cor() directly with method = "spearman"

spearman_corr <- cor(x, y, method = "spearman")

print(spearman_corr)

1

Also through cor.test(..., method="spearman")
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χ2-test

The χ2-test is often used as a goodness-of-fit estimator

Idea: xi are normally distributed, independent random variables with means µi and
variances σ2

i

The test statistic

χ2 =

n∑
i=1

(xi − µi)
2

σ2
i

follows a χ2 distribution

f(x = χ2, ν) =
x(ν/2−1)e−x/2

2ν/2Γ(ν2)
,

• The χ2 distribution is only defined for x > 0 and is 0 otherwise
• ν is the number of degrees of freedom, Γ is the Gamma function

For large ν, the χ2 distribution approaches a normal distribution with µ = ν and
σ2 = 2ν
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χ2-distribution

ν = number of data points− number of parameters fitted

• this holds if the model is linear in the parameters
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χ2-test in practice: is a histogram compatible with assumed
underlying PDF?

H0: The assumed PDF F (x) correctly describes the population from which the
sample x1, ..., xn was drawn

Step 1: generate a histogram where each bin j contains at least bj ≥ 5 counts, so
the approximation is valid (b stands for bin here)

• if a bin contains fewer than 5 counts, it should be combined with a neighboring
bin to satisfy this requirement

• denote the total number of bins as K

Step 2: For each bin j, calculate the expected number of counts ej = npj based
on the assumed PDF F (x)

• pj is the probability that an observation falls within bin j under the assumed
PDF

Step 3: Compute the χ2 statistic given the observed and expeced counts:

X2
0 =

K∑
j=1

(bj − ej)
2

ej
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χ2-test in practice: is a histogram compatible with assumed
underlying PDF?

Step 4: choose a significance level α (0.05, 0.01, or similar), for rejecting or not
rejecting H0

Step 5: calculate the critical value c by solving c = P−1(1 − α) using the inverse
cumulative χ2-distribution with K − 1 degrees of freedom;
in R use: qchisq(1-alpha, df=K-1)

If X2
0 ≤ c accept H0, otherwise reject

Quantification of the statement that the mean squared deviation should not exceed
a given level

Exercise: 1) generate some test data by drawing 1000 samples from a standard normal
distribution and use the χ2-test to check the hypothesis that they were drawn from a
normal PDF. Plot the histogram and overplot the expected Normal distribution (use
α = 0.05 and 10 bins). 2) Repeat the test, but this time draw the samples from a
t-distribution with a) 8 and b) 24 degrees of freedom →chi2test 1.ipynb
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The hypergeometric distribution

Discrete probability distribution

models the scenario of drawing objects from a finite population without replacement

• unlike the binomial distribution where each draw is independent (due to replace-
ment)

in this example we consider only 2 possible types of objects, black or white marbles

N objects (“marbles”) in total, K of one kind (“white marble”) N − K of the
other kind (“black marble”)

Hypergeometric distribution gives the probability to draw k white marbles in n
draws without replacement

P(k) =

(
K
k

)(
N−K
n−k

)(
N
n

)
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The hypergeometric distribution

P(k) =

(
K
k

)(
N−K
n−k

)(
N
n

)
(
K
k

)
is a binomial coefficient, also called ”K choose k,” representing the number

of ways to choose k objects from the K objects of the first type(
N−K
n−k

)
represents the number of ways to choose the remaining n− k objects from

the N −K objects of the second type(
N
n

)
total number of ways to choose n objects from all N objects, regardless of

type
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Interlude: counting raccoons on Königstuhl mountain
(Muira 2011)

Racoons have been brought from North America to Germany, and happily spread out.
A question is: how many live in Germany? Perhaps a bit less ambitiously, we ask how
many live in the forest up Königstuhl mountain?

For counting animals in a habitat biologists developed the so-called capture – re-
capture technique: a number of racoons is randomly captured, labeled and released.
Afterwards, racoons are randomly captured again.

Question: n1 = 25 racoons got caught, labeled, and released. Afterwards, n2 = 25
were re-captured, of which nx = 7 turned out to be labeled. What is the maximum
likelihood estimate Ñ of the number of racoons living on Königstuhl mountain?

→ racoons.ipynb
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Fisher’s exact test – example
Assume that psychologists conducted the following experiment: 48 male bank su-
pervisors had to decide on the promotion of employees in their bank. By random
selection, 24 supervisors were given personnel files labeled as “female”, 24 labeled
as “male”. In fact, except for the label the files were identical. The following table
(called contingency table or truth table) summarizes the outcome:

male female
∑

promote 21 14 35
not promote 3 10 13∑

24 24 48

Looking at the numbers the question arises: Is there a gender bias?

• 48 supervisors choosed to promote 35 employees of which only 14 are female
• put differently: is there an association between gender and probability of being
promoted?

Can the imbalance between the promotion of females and males be understood as
statistical fluctuation?
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Fisher’s exact test – example

male female
∑

promote 21 14 35
not promote 3 10 13∑

24 24 48

Null hypothesis: there is no gender bias. Moreover, table margins are fixed:

• there are always 24 female and 24 male candidates for promotion
• since we do not know any better the total number of promotions (or no-
promotions) is also fixed
⋆ one may consider the supervisors as “promoters” and “no-promoters” who
either always promote or don’t promote irrespective of file content

⋆ could be different when the probability of promotion were known from addi-
tional sources of information (but then another test would have to be made)

if no gender bias, we would expect a 50-50 split of promotions

like in the kangaroo problem the table has only one degree of freedom

Singling (arbitrarily) out the upper left corner of male promotions Fisher found
that the number of male promotions follows a hypergeometric distribution which
becomes the test statistic
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Fisher’s exact test – test statistic

N11 N12 n1.

N21 N22 n2.

n.1 n.2 n..

(only variables with capital names are random variables)

Writing the contingency as above (→ partial sums) the test statistic can be written

P (N11) =

(
n1.
N11

)(
n2.
N21

)(
n..
n.1

) = dhyper(N11, promote, not promote, draws)

For the example one obtains the following table for P (N11)

N11 11 12 13 14 15 16 17
P (N11) .000 .000 .004 .021 .072 .162 .241

N11 18 19 20 21 22 23 24
P (N11) .241 .162 ??? .021 .004 .000 .000

Confirm the table, and have a look at the documentation of dhyper()!
→Fisher test.ipynb
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Fisher’s exact test – result

N11 11 12 13 14 15 16 17
P (N11) .000 .000 .004 .021 .072 .162 .241

N11 18 19 20 21 22 23 24
P (N11) .241 .162 ??? .021 .004 .000 .000

From the table the rejection region for the two-sided test with α = 0.05 is
N11 ∈ {11, 12, 13, 14, 21, 22, 23, 24}.

• we need to sum the probabilities from the most extreme values (both small and
large N11) until the cumulative probability reaches or exceeds α/2 = 0.025 in
each tail

The p-value for the observed N11 = 21 evaluates to∑
N11∈{11,12,13,14, 21,22,23,24}

P (N11) = 0.049 .

Hence, the test would reject the null hypothesis at significance level 0.05
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Kolmogorov-Smirnov (KS) test

Test for continuous probability distributions

Tests whether a given sample xi was drawn from a particular continuous PDF

• non-parametric test
• works with discrete cumulative distribution function → no binning necessary
• suitable for small sample sizes

Test statistic: maximum absolute de-
viation between cumulative distribution
functions:

D = max
∣∣∣F̃ (X)− F (X)

∣∣∣
Interestingly, distribution of test statis-
tic does not depend on particular
F (X)!

Procedure of calculation: look at all “jump positions” of sample CDF
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Kolmogorov-Smirnov (KS) test

There is also a two-sample version of the KS test, meaning that two empirical
distribution functions are compared

The KS test cannot be used if first parameters of the underlying distribution have
been estimated from the sample

• necessary distributions could be established by Monte Carlo simulations

The KS test is mainly sensitive to the center of the distribution

The function ks.test() in R implements everything, including the value of the
test statistic D

• for the D.I.Y. aficionados ecdf() implements the empirical CDF

Since KS, more powerful tests have been developed, notably the Anderson-
Darlington test. It has proven particularly powerful for testing deviations from
normality. In R: ad.test{nortest}
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Wald-Wolfowitz runs test: Testing for randomness

This test whether the data are random, in the sense that successive data points are
uncorrelated

Applicable to binary statistic constructed from the data, for instance

• heads vs. tails
• random number > 0.5 vs. random number < 0.5
• positive residual vs. negative residual

A run is a group of successive data points with the same characteristic, e.g. a
sequence with 17 runs . . .
+ + - - - + + + + - + + - - - + + - + + + + - + - + - - - + - +
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Wald-Wolfowitz runs test: Testing for randomness

Test statistic is the number of runs r, having as input

• m = number of ”heads”
• n = number of ”tails”

The number of runs r is distributed as:

• if r is even:

p(r = 2q) =
2
(
m−1
q−1

)(
n−1
q−1

)(
m+n
m

)
• if r is odd:

p(r = 2q + 1) =

(
m−1
q

)(
n−1
q−1

)
+
(
m−1
q−1

)(
n−1
q

)(
m+n
m

)
Approximately, the statistic p(r) follows a normal distribution N(µ, σ2) with

µ =
2mn

m+ n
+ 1 and σ2 =

2mn (2mn −m− n)

(m+ n)2 (m+ n− 1)

In R, use druns(..) and runs.test(...) in package randtests
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Exercise: analyse human generated random sequences using the
Wald-Wolfowitz test

In the file human-sequences.txt you will find 200 sequences with a length of
50 items each which have been painstakingly created by UKSta students. During
creation, the students were told that the mean relative occurence of ones and zeros
should be 50/50. Read them in, and split the zeros and ones into vector elements
via

d <- scan(’human-sequences.txt’, what=’character’)

d <- sapply(strsplit(d, ’’), function(x) as.integer(x))

Use runs.test() to calculate the distribution of p-values of the 200 sequences.

Compare the distribution (visually) with the distribution to be expected under the
null hypothesis. Conclusions?

Test your own ability to create random sequences: type strings of zeros and ones
and subject them to the Wald-Wolfowitz test!

Wald-Wolfowitz runs test ▷ TOC ▷ FIN 6.3



Classical hypothesis testing: pros and cons

Strengths

• Frequentist methods provide a wide array of statistical tests tailored to many
common scenarios

• low p-value can suggest that there is evidence against the null hypothesis,
potentially indicating that ”something might be going on”

• classical hypothesis testing doesn’t always require a generative model for the
alternative hypothesis H1, making it simpler in certain contexts

Weaknesses

• Rejection of H0 is not proof of H1

• one is left with the question of what the actual probability of a hypothesis is,
given the observed data

• many scientific questions are interested in the relative likelihood of H0 versus
H1 or even H2, H3 etc → Bayesian model selection

• the p-value is often misunderstood as the probability of H0 being true, which
it is not. It is actually the probability of obtaining the observed data, or more
extreme data, assuming H0 is true
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Go Bayesian or go Frequentist?

Frequentist methods rely on the long-run frequency of events. The focus is on
obtaining the probability of observing the data given that H0 is true (characterized
by the p-value)
• Uncertainty is expressed through p-values and confidence intervals
• The p-value does not provide the probability that the null hypothesis is true
• Thresholds are used to decide whether to reject or not the null hypothesis
• Require less computational power and are often easier to implement than Bayesian
methods

Bayesian methods rely on priors and can be used to update the probability of a
hypothesis given the data. They provide a posterior probability of the hypothesis,
which can be directly interpreted as the probability that the hypothesis is true given
the observed data
• Uncertainty is expressed in terms of probabilities that directly quantify belief in
a hypothesis after seeing the data

• Compare the probability of the hypotheses directly by calculating the posterior
odds (or Bayes factor)

• Can be computationally expensive because they often rely on methods like
MCMC to compute posteriors
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