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Overview

Classification: grouping items based on their features or properties

• A fundamental task in machine learning

Example: Gaussian mixture model

• A classic case of unsupervised learning
• Relies on the EM (expectation maximization) algorithm

Applicable to real-valued random variables (continuous data), not categorical ones
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Looking at real world (or rather celestial) data

134 stars were observed in the open stellar cluster M67
(measurements in stars.dat on the web)

• These stars are gravitationally bound and possibly formed together
• They share nearly the same distance and radial velocity (RV)

Radial Velocity (RV): The velocity component of a star along the line-of-sight,
measured via spectroscopy

RV was of interest since the gravitational redshift of stellar light was to be studied
(see RV-related article on the web)

Suspicion/Hypothesis: Dwarf and giant stars may segregate into two distinct groups
based on RV
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RV histogram: two groups not obviously present
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How would you approach the problem to identify two groups or classes?
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Here: attempt clustering analysis
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Main point: stellar color B-V as further information added
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Problem set-up for Gaussian mixture model

Given: N independent data points xn in M -dimensional space

• Typically, M is small (e.g., 2-3 dimensions, such as RV and B-V color)

Fitting Problem: Identify K multivariate Gaussian distributions that best describe
the distribution of data points

• Note: K (the number of Gaussian distributions) must be fixed in advance
• The means and covariances of these Gaussian distributions are initially unknown

Unsupervised Learning: It is not known beforehand which of the N data points
belong to which of the K distributions

Goal: Determine the N conditional probabilities pnk ≡ P (k|n) that point n belongs
to distribution k

• The matrix pnk is known as the responsibility matrix (sometimes referred to as
the mixing matrix)

This responsibility matrix helps in determining how the data points are distributed
among the K Gaussian distributions
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Gaussian mixture model

Things to estimate in GMM . . .

• µ⃗k: The mean vectors (centers) of the K multivariate Gaussians
• Σk: The K M ×M covariance matrices of the Gaussians
• The responsibility matrix P (k|n): Probability that data point n belongs to
Gaussian k

The objective is to maximize the likelihood of the observed data:

L =

N∏
n=1

P (xn)
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Gaussian mixture model

According to the law of total probability, the probability of each data point P (xn)
can be written as a sum over the K Gaussians:

P (xn) =
∑
k

N(xn|µk,Σk)P (k)

• Here, N(xn|µk,Σk) is the probability density function of a multivariate Gaussian
distribution with mean µk and covariance matrix Σk

Typically, the EM (Expectation-Maximization) algorithm is used to maximize this
likelihood

The mixture weights pnk can be computed as:

pnk ≡ P (k|n) = N(xn|µk,Σk)P (k)

P (xn)

This equation provides a recipe for calculating the likelihood L and the mixture
weights pnk given the data xn
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Gaussian mixture model

pnk ≡ P (k|n) = N(xn|µk,Σk)P (k)

P (xn)

Problem: maximize L by varying the parameters µk, Σk, and P (k)
(In a recent paper Hogg et al. worked with N ≈ 20 000, M = 11, K = 256)

EM algorithm suprisingly simple and robust iterative procedure to estimate all the
above parameters
(→ Numerical Recipes for more details of the method)

However, there are two important considerations:

• one must decide on the number of Gaussians K beforehand
• as a non-linear maximization problem, the result may depend on the starting
values chosen
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Toying with Gaussian mixture models

Exercise: This exercise is designed to give you hands-on experience with Gaussian
mixture models and clustering analysis using real-world data

• Step 1: Download the file stars.dat and the plotting routine EMcluster.R
• Step 2: Load the Mclust{mclust} function in R
• Step 3: Apply the Mclust function to the stars.dat dataset to explore
clustering

Explore a different dataset:

• In R, explore available standard datasets using library(help="datasets")

• Try applying Mclust to one of these datasets or search online for another dataset
of interest

• Select a dataset where you have some physical or contextual understanding to
help interpret the results (does the grouping mean anything?)

Interpreting Results:

• Look at the number of clusters identified by the model and compare them with
your expectations

• Check summary statistics and plots to assess clustering quality
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