Statistical Methods

Classification

(based on original lectures by Prof. Dr. N. Christlieb and Dr. Hans-G. Ludwig)

Dr. Yiannis Tsapras

ZAH – Heidelberg

Testing hypotheses II 0.1

Overview

- From parametric to nonparametric regression
 - From fixed functions (lines, polynomials) to flexible models without a preset shape
- Gaussian Processes (GPs): distributions over functions
 - Capture uncertainty, flexibility, and Bayesian reasoning
 - Use kernels to measure similarity between data points
- Hyperparameters
 - Model "settings" (e.g. smoothness, noise) we'll see how to handle these
- Advantages & limitations
 - Powerful for small/medium data, but can be slow for very large sets
- Hands-on in R
 - Fit curves with uncertainty and practical concerns

From Parameters to Functions

- So far: we assumed a specific function (e.g. linear, polynomial) and estimated its parameters
- But what if we **don't know** the right functional form at all?
- lacktriangle New idea: treat the function itself as uncertain ightarrow imagine many possible curves that could explain the data
- A Gaussian Process is a way to describe the probability of these possible curves
- Instead of one "best" curve, we'll get predictions and their uncertainty

What Are Gaussian Processes (GPs)?

- A GP is a probability distribution over related functions
 - think of these functions as possible curves that could explain the data
 - **not arbitrary functions**: they are similar in shape because their shape is determined by a **kernel** (covariance structure) more on this later
- By definition, in a GP, any finite set of function values $\{f(x_1), \ldots, f(x_n)\}$ is **jointly** Gaussian
 - This is like extending the **multivariate Gaussian** you know to infinitely many points (i.e. infinite dimensions)
 - This is the key property that makes it a "Gaussian" process
- One GP describes all points together, not each point separately
 - That means: for any n inputs, $(f(x_1), \ldots, f(x_n))$ follows a multivariate normal with mean m and covariance k
- This lets us make smooth **predictions** with **quantified uncertainty** across the entire input domain

→ FIN

Why Use Gaussian Processes?

- GPs are a nonparametric supervised learning method used to solve regression and probabilistic classification problems
- Flexibility: GPs are non-parametric models (they do not assume a fixed functional form)
 - Instead, they "learn" the shape of the function/curve directly from the data
 * we set only simple assumptions; details later
 - This flexibility allows them to capture a wide variety of patterns, from smooth trends to oscillatory behaviour
- Built-in uncertainty quantification: GPs don't give just point predictions
 - They return a distribution over possible functions that could fit the data
 - These come with confidence intervals, describing how uncertain the model is in any region.
- Bayesian: GPs are inherently Bayesian and interpretable
 - They begin with a prior over a space of functions and update this prior based on observed data to form a posterior

Fitting a curve to data with GPs

- \blacksquare f(x) (dotted line) is the hidden function used to generate the data
 - In practice this function is unknown, we just have some data points (Blue) with uncertainties
 - Orange solid line is the GP prediction of the function shape
 - Shaded orange area shows the GPs uncertainties (95% CI)

How Do GPs Make Predictions?

- Start with a prior belief about possible functions (we'll later see this comes from a kernel)
- The data points act as **anchors**: they restrict the range of possible curves near the measurements
- Condition on the data: predictions near measurements are strongly influenced, far away less so
- \blacksquare For any new location x_* (not in the training set), the GP gives:
 - ullet a predicted mean value $f(x_*)$
 - an uncertainty (variance) around that prediction
- The GP's output is a **distribution over functions**:

→ TOC

- one mean curve (posterior mean) + uncertainty bands
 - * from this distribution, we can also sample many plausible curves

Example: 1D GP Regression in R (with uncertainty)

- Use the mlegp package to fit a Gaussian Process to $f(x) = x \sin x$
 - Download day_10_example_GP_1_template.ipynb
- Choose your own training inputs x_train (5-10 points).
 - Try leaving gaps between points
- Generate y_train <- $f(x_train) + rnorm(..., sd = noise_sd)$
- To fit the GP: gp_model <- mlegp(X = matrix(x_train, ncol = 1), Z = y_train)
- Predict on a grid: pred <- predict.gp(gp_model, matrix(x_pred, ncol = 1), se.fit = TRUE)
- Quick questions:
 - Move the points in x_train around. What do you notice?
 - What happens to your predictions beyond the training range?

→ FIN

2.6

What GPs Can and Cannot Do

- A GP does **not** recover the exact analytic function that generated the data
- Instead, it gives a distribution of plausible functions consistent with data + assumptions
- In practice, this is useful because we can:
 - interpolate between observations with quantified uncertainty
 - cautiously extrapolate nearby, with uncertainty growing as we move away
 - compare different assumptions about function behaviour (e.g. smooth vs. periodic) by testing which kernel explains the data better
- GPs are especially useful when data are scarce or expensive (e.g. costly experiments, simulations)
- They provide calibrated uncertainty, unlike many machine learning methods that only give point predictions
- Main limitation: **computational costs scale** as $(\mathcal{O}(n^3))$, so GPs are best for small/medium datasets

→ FIN

The GP Regression Recipe

- Step 1: Define a prior
 - Choose a mean function (often zero) and a kernel
 - The kernel specifies how **similar two input locations** x and x' are, and therefore how strongly their function values f(x) and f(x') are correlated
- Step 2: Add the observed data
 - The data anchor the possible functions near the measurements
- Step 3: Condition on the data
 - ullet For any new location x_* , the GP gives a distribution for $f(x_*)$
- Step 4: Read off predictions
 - ullet Posterior mean o best-guess curve
 - Posterior variance → uncertainty bands
- Outcome: smooth predictions with quantified uncertainty across the input domain

⊳ FIN

GP Regression: Two Key Equations

■ Given training data (X,y) and a new point x_* :

Posterior mean: $\mu(x_*) = k(x_*, X) [K(X, X) + \sigma^2 I]^{-1} y$

Posterior variance: $\sigma^2(x_*) = k(x_*, x_*) - k(x_*, X) [K(X, X) + \sigma^2 I]^{-1} k(X, x_*)$

- $\mu(x_*)$: the GP's best guess (orange line) $\sigma^2(x_*)$: the GP's uncertainty (shaded band)
- You don't need to derive these, but you should know:
 - predictions are weighted averages of observed data
 - uncertainty shrinks near data, grows in gaps or far away

■ Notation:

• k(x, x') = kernel function (covariance between inputs x and x')

⊳ FIN

- K(X,X) = covariance matrix of all training inputs
- I = identity matrix (noise added only on diagonal)

The Role of the Kernel (aka "covariance function")

- The **kernel** k(x, x') is the key ingredient in a GP
- \blacksquare It specifies how similar two inputs x and x' are
 - ullet ightarrow close inputs \Rightarrow strongly correlated function values
 - ullet o far inputs \Rightarrow weakly correlated function values
- Different kernels **encode different assumptions** about the function's behaviour:
 - Squared Exponential (RBF): very smooth functions
 - Matérn: rougher, less smooth functions
 - Periodic: repeating patterns
 - Linear: captures global trends
- By **combining kernels** (adding or multiplying), we can model more complex structures in the data

The Kernel Zoo

- The **kernel** k(x, x') controls how similar f(x) and f(x') are
 - close inputs \Rightarrow high covariance; far inputs \Rightarrow low covariance
- Common choices (1D examples; $\ell = \text{length-scale}$, $\sigma^2 = \text{signal variance}$):
 - Squared Exponential (RBF): $k(r) = \sigma^2 \exp\left(-\frac{r^2}{2\ell^2}\right)$ (very smooth)
 - Matérn- $\nu = 3/2$: $k(r) = \sigma^2 \left(1 + \frac{\sqrt{3}r}{\ell}\right) \exp\left(-\frac{\sqrt{3}r}{\ell}\right)$ (moderately rough)
 - Matérn- $\nu = 5/2$: $k(r) = \sigma^2 \left(1 + \frac{\sqrt{5}r}{\ell} + \frac{5r^2}{3\ell^2} \right) \exp\left(-\frac{\sqrt{5}r}{\ell} \right)$
 - **Periodic:** $k(x, x') = \sigma^2 \exp\left(-\frac{2\sin^2(\pi|x-x'|/p)}{\ell^2}\right)$ (repeating patterns; period p)
 - Linear: $k(x, x') = \sigma_b^2 + \sigma_v^2 x x'$ (global trend)
- \blacksquare Sums/products build richer structure: e.g. trend + seasonality + noise

 $\mathsf{Hands} ext{-}\mathsf{on} \to \mathsf{Kernel_Zoo.ipynb}$

Gaussian Mixture models

- We saw that a GP is a distribution over functions
 - Used in regression or classification when we want to model smooth continuous functions with uncertainty
- A Gaussian Mixture Model (GMM) on the other hand, is a distribution over data points.
 - Assumes the observed data is generated from some mixture of multiple Gaussian distributions, each with its own mean and covariance
 - Typically used for clustering analysis and density estimation
 - Defined by the parameters of each component Gaussian, the Gaussian Mixture Model is:

$$p(x) = \sum_{k=1}^{K} \mathcal{N}(x \mid \mu_k, \Sigma_k) P_k$$

Gaussian Mixture models

lacktriangleright $\mathcal N$ is the Multivariate Gaussian density:

$$\mathcal{N}(x \mid \mu_k, \Sigma_k) = \frac{1}{(2\pi)^{d/2} |\Sigma_k|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_k)^{\top} \Sigma_k^{-1} (x - \mu_k)\right)$$

- $x \in \mathbb{R}^d$: observed data vector
- *K*: number of Gaussian components
- P_k : mixture weight of component k, with $P_k \geq 0$ and $\sum_{k=1}^K P_k = 1$
- $\mu_k \in \mathbb{R}^d$: mean vector of component k
- $\Sigma_k \in \mathbb{R}^{d \times d}$: covariance matrix of component k
- $|\Sigma_k|$: determinant of the covariance matrix
- Σ_k^{-1} : inverse of the covariance matrix
- d: dimensionality of the data space
- Each data point is "softly" assigned to all clusters (not just one), with probabilities given by the mixture weights π_k
- GMMs give probabilistic cluster membership

Problem set-up for Gaussian mixture model

- Given: N independent data points \boldsymbol{x}_n in M-dimensional space
 - \bullet Typically, M is small (e.g., 2-3 dimensions, such as RV and B-V color)
- lacktriangle Fitting Problem: Identify K multivariate Gaussian distributions that best describe the distribution of data points
 - Note: K (the number of Gaussian distributions) must be fixed in advance
 - The means and covariances of these Gaussian distributions are initially unknown
- lacktriang Unsupervised Learning: It is not known beforehand which of the N data points belong to which of the K distributions
- Goal: Determine the N conditional probabilities $p_{nk} \equiv P(k|n)$ that point n belongs to distribution k
 - The matrix p_{nk} is known as the **responsibility matrix** (sometimes referred to as the mixing matrix)
- lacktriangle This responsibility matrix helps in determining how the data points are distributed among the K Gaussian distributions

Gaussian Mixture Models ▷ TOC ▷ FIN 4.3

Gaussian mixture model

- Things to estimate in GMM . . .
 - $\vec{\mu}_k$: The mean vectors (centers) of the K multivariate Gaussians
 - ullet Σ_k : The K M imes M covariance matrices of the Gaussians
 - ullet The responsibility matrix P(k|n): Probability that data point n belongs to Gaussian k
- The objective is to maximize the likelihood of the observed data:

$$\mathcal{L} = \prod_{n=1}^{N} P(\boldsymbol{x}_n)$$

Gaussian mixture model

■ According to the law of total probability, the probability of each data point $P(x_n)$ can be written as a sum over the K Gaussians:

$$P(\boldsymbol{x}_n) = \sum_{k} N(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) P(k)$$

- Here, $N(\boldsymbol{x}_n|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)$ is the probability density function of a multivariate Gaussian distribution with mean $\boldsymbol{\mu}_k$ and covariance matrix $\boldsymbol{\Sigma}_k$
- Typically, the EM (Expectation-Maximization) algorithm is used to maximize this likelihood
- The mixture weights p_{nk} can be computed as:

$$p_{nk} \equiv P(k|n) = \frac{N(\boldsymbol{x}_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)P(k)}{P(\boldsymbol{x}_n)}$$

■ This equation provides a recipe for calculating the likelihood \mathcal{L} and the mixture weights p_{nk} given the data \boldsymbol{x}_n

Gaussian mixture model

$$p_{nk} \equiv P(k|n) = \frac{N(\boldsymbol{x}_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)P(k)}{P(\boldsymbol{x}_n)}$$

- Problem: maximize \mathcal{L} by varying the parameters μ_k , Σ_k , and P(k) (In a recent paper Hogg et al. worked with $N \approx 20\,000$, M = 11, K = 256)
- EM algorithm suprisingly simple and robust iterative procedure to estimate all the above parameters
 - $(o Numerical\ Recipes\$ for more details of the method)
- However, there are two important considerations:
 - one must decide on the number of Gaussians K beforehand
 - as a non-linear maximization problem, the result may depend on the starting values chosen

Toying with Gaussian mixture models

- Exercise: This exercise is designed to give you hands-on experience with Gaussian mixture models and clustering analysis using real-world data
 - Step 1: Download the file stars.dat and the plotting routine EMcluster.R
 - Step 2: Load the Mclust{mclust} function in R
 - Step 3: Apply the Mclust function to the stars.dat dataset to explore clustering
- Explore a different dataset:
 - In R, explore available standard datasets using library(help="datasets")
 - Try applying Mclust to one of these datasets or search online for another dataset of interest
 - Select a dataset where you have some physical or contextual understanding to help interpret the results (does the grouping mean anything?)
- Interpreting Results:
 - Look at the number of clusters identified by the model and compare them with your expectations
 - Check summary statistics and plots to assess clustering quality

Gaussian Mixture Models ▷ TOC ▷ FIN 4.7