Statistical Methods

Classification

(based on original lectures by Prof. Dr. N. Christlieb and Dr. Hans-G. Ludwig)

Dr. Yiannis Tsapras

/ZAH — Heidelberg

vy

Testing hypotheses |l

0.1



Overview

m From parametric to nonparametric regression
e From fixed functions (lines, polynomials) to flexible models without a preset
shape
m Gaussian Processes (GPs): distributions over functions
e Capture uncertainty, flexibility, and Bayesian reasoning
e Use kernels to measure similarity between data points
m Hyperparameters

e Model "settings” (e.g. smoothness, noise) - we'll see how to handle these

m Advantages & limitations

e Powerful for small/medium data, but can be slow for very large sets

m Hands-on in R

e Fit curves with uncertainty and practical concerns

Overview > TOC > FIN 1.1



From Parameters to Functions

m So far: we assumed a specific function (e.g. linear, polynomial) and estimated its
parameters

m But what if we don’t know the right functional form at all?

m New idea: treat the function itself as uncertain —imagine many possible curves
that could explain the data

m A Gaussian Process is a way to describe the probability of these possible curves

m Instead of one "best” curve, we'll get predictions and their uncertainty

Gaussian processes: introduction > TOC > FIN 2.1



What Are Gaussian Processes (GPs)?

m A GP is a probability distribution over related functions

e think of these functions as possible curves that could explain the data
e not arbitrary functions: they are similar in shape because their shape is
determined by a kernel (covariance structure) — more on this later

m By definition, in a GP, any finite set of function values { f(x1),..., f(z,)} is jointly
Gaussian

e This is like extending the multivariate Gaussian you know to infinitely many
points (i.e. infinite dimensions)
e This is the key property that makes it a " Gaussian” process

m One GP describes all points together, not each point separately
e That means: for any n inputs, (f(z1),..., f(xy)) follows a multivariate normal

with mean m and covariance k

m This lets us make smooth predictions with quantified uncertainty across the
entire input domain

Gaussian processes: introduction > TOC > FIN 2.2



Why Use Gaussian Processes?

m GPs are a nonparametric supervised learning method used to solve regression and
probabilistic classification problems

m Flexibility: GPs are non-parametric models (they do not assume a fixed functional
form)

e Instead, they "learn” the shape of the function/curve directly from the data
* we set only simple assumptions; details later

e This flexibility allows them to capture a wide variety of patterns, from smooth
trends to oscillatory behaviour

m Built-in uncertainty quantification: GPs don't give just point predictions

e They return a distribution over possible functions that could fit the data
e These come with confidence intervals, describing how uncertain the model is
In any region.

m Bayesian: GPs are inherently Bayesian and interpretable

e They begin with a prior over a space of functions and update this prior based
on observed data to form a posterior

Gaussian processes: introduction > TOC > FIN 2.3



Fitting a curve to data with GPs

Gaussian process regression on a noisy dataset

----- flx) = xsin(x)
10.0 A Mean prediction
95% confidence interval
7.5 - $ Observations ;
u . H
5.0 -
251 +
> .-"'..“' - o E
0.04 {'
—2.5 - +
5. +
_?.5 -
T
0 2 4 6 8 10
X

m f(x) (dotted line) is the hidden function used to generate the data

e In practice this function is unknown, we just have some data points (Blue) with
uncertainties

e Orange solid line is the GP prediction of the function shape

e Shaded orange area shows the GPs uncertainties (95% CI)

Gaussian processes: introduction > TOC > FIN 2.4



How Do GPs Make Predictions?

Start with a prior belief about possible functions (we'll later see this comes from a
kernel)

The data points act as anchors: they restrict the range of possible curves near the
measurements

Condition on the data: predictions near measurements are strongly influenced, far
away less so

For any new location x, (not in the training set), the GP gives:

e a predicted mean value f(x,)

e an uncertainty (variance) around that prediction

The GP's output is a distribution over functions:

e one mean curve (posterior mean) + uncertainty bands
* from this distribution, we can also sample many plausible curves

Gaussian processes: introduction > TOC > FIN 2.5



Example: 1D GP Regression in R (with uncertainty)

m Use the mlegp package to fit a Gaussian Process to f(z) = xsinx

e Download day_10_example_GP_1_template.ipynb

m Choose your own training inputs x_train (5-10 points).

e Try leaving gaps between points
m Generate y_train <- f(x_train) + rnorm(..., sd = noise_sd)

m [o fit the GP: gp_model <- mlegp(X = matrix(x_train, ncol = 1), Z
y_train)

m Predict on a grid: pred <- predict.gp(gp-model, matrix(x_pred, ncol
1), se.fit = TRUE)
m Quick questions:

e Move the points in x_train around. What do you notice?
e \What happens to your predictions beyond the training range?

Gaussian processes: introduction > TOC > FIN

2.6



What GPs Can and Cannot Do

m A GP does not recover the exact analytic function that generated the data

m Instead, it gives a distribution of plausible functions consistent with data +
assumptions

m In practice, this is useful because we can:

e interpolate between observations with quantified uncertainty

e cautiously extrapolate nearby, with uncertainty growing as we move away

e compare different assumptions about function behaviour (e.g. smooth vs.
periodic) by testing which kernel explains the data better

m GPs are especially useful when data are scarce or expensive (e.g. costly experi-
ments, simulations)

m [ hey provide calibrated uncertainty, unlike many machine learning methods that
only give point predictions

m Main limitation: computational costs scale as (O(n?)), so GPs are best for
small/medium datasets

Gaussian processes: introduction > TOC > FIN 2.7



The GP Regression Recipe

m Step 1: Define a prior

e Choose a mean function (often zero) and a kernel
e The kernel specifies how similar two input locations x and 2’ are, and therefore
how strongly their function values f(x) and f(x") are correlated

m Step 2: Add the observed data

e The data anchor the possible functions near the measurements

m Step 3: Condition on the data

e For any new location z,, the GP gives a distribution for f(x,)

m Step 4: Read off predictions

e Posterior mean — best-guess curve
e Posterior variance — uncertainty bands

m Outcome: smooth predictions with quantified uncertainty across the input domain

Gaussian processes: under the hood > TOC > FIN 3.1



GP Regression: Two Key Equations

m Given training data (X, y) and a new point z,:

Posterior mean: () = k(xy, X) [K(X,X) + %Iy
Posterior variance:  02(x,) = k(z, T.) — k(z4, X) [K(X, X) + 0°1] k(X )

[ |
q =

(z4): the GP’s best guess (orange line)
%(x4): the GP’s uncertainty (shaded band)
m You don't need to derive these, but you should know:
e predictions are weighted averages of observed data
e uncertainty shrinks near data, grows in gaps or far away
m Notation:

e k(x,x’) = kernel function (covariance between inputs = and z’)
e K (X, X) = covariance matrix of all training inputs
e | = identity matrix (noise added only on diagonal)

Gaussian processes: under the hood > TOC > FIN 3.2



The Role of the Kernel (aka ” covariance function”)

m The kernel k(x,x’) is the key ingredient in a GP

m |t specifies how similar two inputs z and 2’ are

e — close inputs = strongly correlated function values
e — far inputs = weakly correlated function values

m Different kernels encode different assumptions about the function's behaviour:

Squared Exponential (RBF): very smooth functions
Matérn: rougher, less smooth functions

Periodic: repeating patterns

Linear: captures global trends

m By combining kernels (adding or multiplying), we can model more complex
structures in the data

Gaussian processes: under the hood > TOC > FIN 3.3



The Kernel Zoo

m The kernel k(x,x") controls how similar f(z) and f(z) are

e close inputs = high covariance; far inputs = low covariance

m Common choices (1D examples; ¢ = length-scale, o2 = signal variance):

2

e Squared Exponential (RBF): k(r) = oc?exp( — =)  (very smooth)

242
e Matérn-v=3/2: k(r) = o?(1+ \/ET) eXp2( — \/gr) (moderately rough)
e Matérn-v=5/2: k(r) = 02(1 + \/Er + 222) exp( — \/ET)
.2 /
e Periodic: k(z,7') = o? exp( _ 2sin (Wg_x Vp)) (repeating patterns; period

p)
e Linear: k(z,2') =0} +0c2x2’ (global trend)

m Sums/products build richer structure: e.g. trend + seasonality + noise

Hands-on —Kernel_Zoo.ipynb

Gaussian processes: under the hood > TOC > FIN 3.4



Gaussian Mixture models

m We saw that a GP is a distribution over functions

e Used in regression or classification when we want to model smooth continuous
functions with uncertainty

m A Gaussian Mixture Model (GMM) on the other hand, is a distribution over
data points.

e Assumes the observed data is generated from some mixture of multiple Gaussian
distributions, each with its own mean and covariance
e Typically used for clustering analysis and density estimation

e Defined by the parameters of each component Gaussian, the Gaussian Mixture
Model is:

p(x) :ZN@ | pe, Xi) P
k

=1

Gaussian Mixture Models > TOC > FIN 4.1



Gaussian Mixture models

m NV is the Multivariate Gaussian density:

1 .
N (x| g, Zx) = LEALE exp(—3(z — p) ' Sy ( — )

z € R% observed data vector

K: number of Gaussian components

P;.: mixture weight of component k, with P, > 0 and Zle P. =1
1 € R% mean vector of component k

Y, € R4 covariance matrix of component &

3 k|: determinant of the covariance matrix

2;1: inverse of the covariance matrix

d: dimensionality of the data space

m Each data point is "softly” assigned to all clusters (not just one), with probabilities
given by the mixture weights

m GMMs give probabilistic cluster membership

Gaussian Mixture Models > TOC > FIN 4.2



Problem set-up for Gaussian mixture model

m Given: N independent data points x,, in M-dimensional space

e Typically, M is small (e.g., 2-3 dimensions, such as RV and B-V color)

m Fitting Problem: ldentify K multivariate Gaussian distributions that best describe
the distribution of data points

e Note: K (the number of Gaussian distributions) must be fixed in advance
e The means and covariances of these Gaussian distributions are initially unknown

m Unsupervised Learning: It is not known beforehand which of the N data points
belong to which of the K distributions

m Goal: Determine the NV conditional probabilities p,,,, = P(k|n) that point n belongs
to distribution £
e The matrix p,i is known as the responsibility matrix (sometimes referred to as

the mixing matrix)

m T his responsibility matrix helps in determining how the data points are distributed
among the K Gaussian distributions

Gaussian Mixture Models > TOC > FIN 4.3



Gaussian mixture model

m Things to estimate in GMM ...

e /ii: The mean vectors (centers) of the K multivariate Gaussians
e X.: The K M x M covariance matrices of the Gaussians

e The responsibility matrix P(k|n): Probability that data point n belongs to
Gaussian £

m The objective is to maximize the likelihood of the observed data:

N

Gaussian Mixture Models > TOC > FIN 4.4



Gaussian mixture model

m According to the law of total probability, the probability of each data point P(x,,)
can be written as a sum over the K Gaussians:

P(@,) = 3 N(@aly. S P(k)

e Here, N(x,|u;, Xk) is the probability density function of a multivariate Gaussian
distribution with mean p,; and covariance matrix 3

m Typically, the EM (Expectation-Maximization) algorithm is used to maximize this
likelihood

m [ he mixture weights p,,r can be computed as:

T |1y, i) P (k)
P(x,)

pnk = P(k|n) = V(

m This equation provides a recipe for calculating the likelihood £ and the mixture
weights p,x given the data x,,

Gaussian Mixture Models > TOC > FIN 4.5



Gaussian mixture model

N (@n|py, i) P (k)
P(x,)

m Problem: maximize £ by varying the parameters p,, 3, and P(k)
(In a recent paper Hogg et al. worked with N =~ 20000, M =11, K = 256)

m EM algorithm suprisingly simple and robust iterative procedure to estimate all the
above parameters

(— Numerical Recipes for more details of the method)

m However, there are two important considerations:

e one must decide on the number of Gaussians K beforehand

e as a non-linear maximization problem, the result may depend on the starting
values chosen

Gaussian Mixture Models > TOC > FIN 4.6



Toying with Gaussian mixture models

m Exercise: This exercise is designed to give you hands-on experience with Gaussian
mixture models and clustering analysis using real-world data

e Step 1: Download the file stars.dat and the plotting routine EMcluster.R

e Step 2: Load the Mclust{mclust} function in R

e Step 3: Apply the Mclust function to the stars.dat dataset to explore
clustering

m Explore a different dataset:

e In R, explore available standard datasets using library(help="datasets")

e Try applying Mclust to one of these datasets or search online for another dataset
of interest

e Select a dataset where you have some physical or contextual understanding to
help interpret the results (does the grouping mean anything?)

m Interpreting Results:

e Look at the number of clusters identified by the model and compare them with
your expectations
e Check summary statistics and plots to assess clustering quality

Gaussian Mixture Models > TOC > FIN 4.7



