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Overview

From parametric to nonparametric regression

• From fixed functions (lines, polynomials) to flexible models without a preset
shape

Gaussian Processes (GPs): distributions over functions

• Capture uncertainty, flexibility, and Bayesian reasoning
• Use kernels to measure similarity between data points

Hyperparameters

• Model ”settings” (e.g. smoothness, noise) - we’ll see how to handle these

Advantages & limitations

• Powerful for small/medium data, but can be slow for very large sets

Hands-on in R

• Fit curves with uncertainty and practical concerns
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From Parameters to Functions

So far: we assumed a specific function (e.g. linear, polynomial) and estimated its
parameters

But what if we don’t know the right functional form at all?

New idea: treat the function itself as uncertain →imagine many possible curves
that could explain the data

A Gaussian Process is a way to describe the probability of these possible curves

Instead of one ”best” curve, we’ll get predictions and their uncertainty
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What Are Gaussian Processes (GPs)?

A GP is a probability distribution over related functions

• think of these functions as possible curves that could explain the data
• not arbitrary functions: they are similar in shape because their shape is
determined by a kernel (covariance structure) – more on this later

By definition, in a GP, any finite set of function values {f(x1), . . . , f(xn)} is jointly
Gaussian

• This is like extending the multivariate Gaussian you know to infinitely many
points (i.e. infinite dimensions)

• This is the key property that makes it a ”Gaussian” process

One GP describes all points together, not each point separately

• That means: for any n inputs, (f(x1), . . . , f(xn)) follows a multivariate normal
with mean m and covariance k

This lets us make smooth predictions with quantified uncertainty across the
entire input domain
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Why Use Gaussian Processes?

GPs are a nonparametric supervised learning method used to solve regression and
probabilistic classification problems

Flexibility: GPs are non-parametric models (they do not assume a fixed functional
form)

• Instead, they ”learn” the shape of the function/curve directly from the data
⋆ we set only simple assumptions; details later

• This flexibility allows them to capture a wide variety of patterns, from smooth
trends to oscillatory behaviour

Built-in uncertainty quantification: GPs don’t give just point predictions

• They return a distribution over possible functions that could fit the data
• These come with confidence intervals, describing how uncertain the model is
in any region.

Bayesian: GPs are inherently Bayesian and interpretable

• They begin with a prior over a space of functions and update this prior based
on observed data to form a posterior
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Fitting a curve to data with GPs

f(x) (dotted line) is the hidden function used to generate the data

• In practice this function is unknown, we just have some data points (Blue) with
uncertainties

• Orange solid line is the GP prediction of the function shape
• Shaded orange area shows the GPs uncertainties (95% CI)
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How Do GPs Make Predictions?

Start with a prior belief about possible functions (we’ll later see this comes from a
kernel)

The data points act as anchors: they restrict the range of possible curves near the
measurements

Condition on the data: predictions near measurements are strongly influenced, far
away less so

For any new location x∗ (not in the training set), the GP gives:

• a predicted mean value f(x∗)
• an uncertainty (variance) around that prediction

The GP’s output is a distribution over functions:

• one mean curve (posterior mean) + uncertainty bands
⋆ from this distribution, we can also sample many plausible curves
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Example: 1D GP Regression in R (with uncertainty)

Use the mlegp package to fit a Gaussian Process to f(x) = x sinx

• Download day 10 example GP 1 template.ipynb

Choose your own training inputs x train (5-10 points).

• Try leaving gaps between points

Generate y train <- f(x train) + rnorm(..., sd = noise sd)

To fit the GP: gp model <- mlegp(X = matrix(x train, ncol = 1), Z =

y train)

Predict on a grid: pred <- predict.gp(gp model, matrix(x pred, ncol =

1), se.fit = TRUE)

Quick questions:

• Move the points in x train around. What do you notice?
• What happens to your predictions beyond the training range?
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What GPs Can and Cannot Do

A GP does not recover the exact analytic function that generated the data

Instead, it gives a distribution of plausible functions consistent with data +
assumptions

In practice, this is useful because we can:

• interpolate between observations with quantified uncertainty
• cautiously extrapolate nearby, with uncertainty growing as we move away
• compare different assumptions about function behaviour (e.g. smooth vs.
periodic) by testing which kernel explains the data better

GPs are especially useful when data are scarce or expensive (e.g. costly experi-
ments, simulations)

They provide calibrated uncertainty, unlike many machine learning methods that
only give point predictions

Main limitation: computational costs scale as (O(n3)), so GPs are best for
small/medium datasets
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The GP Regression Recipe

Step 1: Define a prior

• Choose a mean function (often zero) and a kernel
• The kernel specifies how similar two input locations x and x′ are, and therefore
how strongly their function values f(x) and f(x′) are correlated

Step 2: Add the observed data

• The data anchor the possible functions near the measurements

Step 3: Condition on the data

• For any new location x∗, the GP gives a distribution for f(x∗)

Step 4: Read off predictions

• Posterior mean → best-guess curve
• Posterior variance → uncertainty bands

Outcome: smooth predictions with quantified uncertainty across the input domain
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GP Regression: Two Key Equations

Given training data (X, y) and a new point x∗:

Posterior mean: µ(x∗) = k(x∗, X) [K(X,X) + σ2I]−1y

Posterior variance: σ2(x∗) = k(x∗, x∗)− k(x∗, X) [K(X,X) + σ2I]−1k(X,x∗)

µ(x∗): the GP’s best guess (orange line)
σ2(x∗): the GP’s uncertainty (shaded band)

You don’t need to derive these, but you should know:

• predictions are weighted averages of observed data
• uncertainty shrinks near data, grows in gaps or far away

Notation:

• k(x, x′) = kernel function (covariance between inputs x and x′)
• K(X,X) = covariance matrix of all training inputs
• I = identity matrix (noise added only on diagonal)
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The Role of the Kernel (aka ”covariance function”)

The kernel k(x, x′) is the key ingredient in a GP

It specifies how similar two inputs x and x′ are

• → close inputs ⇒ strongly correlated function values
• → far inputs ⇒ weakly correlated function values

Different kernels encode different assumptions about the function’s behaviour:

• Squared Exponential (RBF): very smooth functions
• Matérn: rougher, less smooth functions
• Periodic: repeating patterns
• Linear: captures global trends

By combining kernels (adding or multiplying), we can model more complex
structures in the data
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The Kernel Zoo

The kernel k(x, x′) controls how similar f(x) and f(x′) are

• close inputs ⇒ high covariance; far inputs ⇒ low covariance

Common choices (1D examples; ℓ = length-scale, σ2 = signal variance):

• Squared Exponential (RBF): k(r) = σ2 exp
(
− r2

2ℓ2

)
(very smooth)

• Matérn-ν=3/2: k(r) = σ2
(
1 +

√
3r
ℓ

)
exp

(
−

√
3r
ℓ

)
(moderately rough)

• Matérn-ν=5/2: k(r) = σ2
(
1 +

√
5r
ℓ + 5r2

3ℓ2

)
exp

(
−

√
5r
ℓ

)
• Periodic: k(x, x′) = σ2 exp

(
− 2 sin2(π|x−x′|/p)

ℓ2

)
(repeating patterns; period

p)
• Linear: k(x, x′) = σ2

b + σ2
v xx

′ (global trend)

Sums/products build richer structure: e.g. trend + seasonality + noise

Hands-on →Kernel Zoo.ipynb
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Gaussian Mixture models

We saw that a GP is a distribution over functions

• Used in regression or classification when we want to model smooth continuous
functions with uncertainty

A Gaussian Mixture Model (GMM) on the other hand, is a distribution over
data points.

• Assumes the observed data is generated from some mixture of multiple Gaussian
distributions, each with its own mean and covariance

• Typically used for clustering analysis and density estimation
• Defined by the parameters of each component Gaussian, the Gaussian Mixture
Model is:

p(x) =

K∑
k=1

N
(
x | µk,Σk

)
Pk
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Gaussian Mixture models

N is the Multivariate Gaussian density:

N (x | µk,Σk) =
1

(2π)d/2|Σk|1/2
exp

(
−1

2(x− µk)
⊤Σ−1

k (x− µk)
)

• x ∈ Rd: observed data vector
• K: number of Gaussian components
• Pk: mixture weight of component k, with Pk ≥ 0 and

∑K
k=1Pk = 1

• µk ∈ Rd: mean vector of component k
• Σk ∈ Rd×d: covariance matrix of component k
• |Σk|: determinant of the covariance matrix
• Σ−1

k : inverse of the covariance matrix
• d: dimensionality of the data space

Each data point is ”softly” assigned to all clusters (not just one), with probabilities
given by the mixture weights πk

GMMs give probabilistic cluster membership
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Problem set-up for Gaussian mixture model

Given: N independent data points xn in M -dimensional space

• Typically, M is small (e.g., 2-3 dimensions, such as RV and B-V color)

Fitting Problem: Identify K multivariate Gaussian distributions that best describe
the distribution of data points

• Note: K (the number of Gaussian distributions) must be fixed in advance
• The means and covariances of these Gaussian distributions are initially unknown

Unsupervised Learning: It is not known beforehand which of the N data points
belong to which of the K distributions

Goal: Determine the N conditional probabilities pnk ≡ P (k|n) that point n belongs
to distribution k

• The matrix pnk is known as the responsibility matrix (sometimes referred to as
the mixing matrix)

This responsibility matrix helps in determining how the data points are distributed
among the K Gaussian distributions

Gaussian Mixture Models ▷ TOC ▷ FIN 4.3



Gaussian mixture model

Things to estimate in GMM . . .

• µ⃗k: The mean vectors (centers) of the K multivariate Gaussians
• Σk: The K M ×M covariance matrices of the Gaussians
• The responsibility matrix P (k|n): Probability that data point n belongs to
Gaussian k

The objective is to maximize the likelihood of the observed data:

L =

N∏
n=1

P (xn)
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Gaussian mixture model

According to the law of total probability, the probability of each data point P (xn)
can be written as a sum over the K Gaussians:

P (xn) =
∑
k

N(xn|µk,Σk)P (k)

• Here, N(xn|µk,Σk) is the probability density function of a multivariate Gaussian
distribution with mean µk and covariance matrix Σk

Typically, the EM (Expectation-Maximization) algorithm is used to maximize this
likelihood

The mixture weights pnk can be computed as:

pnk ≡ P (k|n) = N(xn|µk,Σk)P (k)

P (xn)

This equation provides a recipe for calculating the likelihood L and the mixture
weights pnk given the data xn

Gaussian Mixture Models ▷ TOC ▷ FIN 4.5



Gaussian mixture model

pnk ≡ P (k|n) = N(xn|µk,Σk)P (k)

P (xn)

Problem: maximize L by varying the parameters µk, Σk, and P (k)
(In a recent paper Hogg et al. worked with N ≈ 20 000, M = 11, K = 256)

EM algorithm suprisingly simple and robust iterative procedure to estimate all the
above parameters
(→ Numerical Recipes for more details of the method)

However, there are two important considerations:

• one must decide on the number of Gaussians K beforehand
• as a non-linear maximization problem, the result may depend on the starting
values chosen
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Toying with Gaussian mixture models

Exercise: This exercise is designed to give you hands-on experience with Gaussian
mixture models and clustering analysis using real-world data

• Step 1: Download the file stars.dat and the plotting routine EMcluster.R
• Step 2: Load the Mclust{mclust} function in R
• Step 3: Apply the Mclust function to the stars.dat dataset to explore
clustering

Explore a different dataset:

• In R, explore available standard datasets using library(help="datasets")

• Try applying Mclust to one of these datasets or search online for another dataset
of interest

• Select a dataset where you have some physical or contextual understanding to
help interpret the results (does the grouping mean anything?)

Interpreting Results:

• Look at the number of clusters identified by the model and compare them with
your expectations

• Check summary statistics and plots to assess clustering quality
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