

Statistical methods(UKSta) Introduction **Dr. Yiannis Tsapras** Summer term 2024

Code: UKSta	Modulname: Statistical Methods
Art des Moduls	Wahlpflichtmodul
Modulbetreuer	
Sprache	Englisch
Leistungspunkte*	3
Lerninhalte des Moduls*	 Concept of probability, probability distributions, Bayesian reasoning errors, error propagiation, estimation, uncertainty orthodox hypothesis testing (e.g. t-test) and Bayesian model comparison linear models and regression binomial and poisson processes likelihood-based modelling: prior, likelihood, posterior; maximum likelihood, least squares, chi-squared Bayesian modelling using numerical (Monte Carlo) methods: sampling, integration nonlinear and nonparametric methods: density estimation, kernel methods, regularization statistics with the R pgrogramming language learning the principles and methods of probability and statistics needed for analysing, modelling and interpreting data
Lehr- und Lernformen*	• Laboratory course, homework Literatur: Notes provided by lecture, plus book/internet recommendations Besonderheiten: course given in English; block course of 10 half days over two weeks (mornings)
Voraussetzungen für die Teilnahme, ggf. vorgeschriebenes oder empfohlenes Studiensemester*	Notwendige/nützliche Vorkenntnisse: basic (high school) statistics and first semester maths (for physicists). Recommended from the third semester
Verwendbarkeit des Moduls*	(siehe Präambel).
Voraussetzung für die Vergabe von Leistungspunkten, Arbeitsaufwand und Noten*	Prüfungsmodalitäten: Doing the exercises in class, submitting the homework, presenting the homework at least once
Häufigkeit des Angebots von Modulen*	Sommersemester
Dauer*	2 Wochen

What is statistics?

- Summary description of data
 - Mean; median; variance; quartiles of a distribution
 - Diagrams; Tables
 - Principal component analysis (PCA)
- Inference from data; decision making
 - Determination of the parameters of a model
 - Do the measurements agree with the model?
 - Do two sets of measurements/properties of two samples agree with each other?
- Understanding structure in data
 - Are two parameters correlated with each other?
 - Classification: can data be grouped according common properties?

The role of statistics

- "The logic behind science"
- Not only important for describing/analysing given datasets, but also for planning/executing experiments as well as designing surveys and compiling samples.

Statistical diversity

- Genetics, central role in bioinformatics
- Kinetic theory of gases
- Design of computer operating system (e.g., theory of queues)
- Noise in electrical devices
- Model atmospheric turbulence
- Insurance and finance
- Theory of complex systems
- ... and much more

How to deal with the diversity?

- Here: emphasis on Monte Carlo approach
- Importance constantly increasing due to economic computing resources
- Books often deal with methods specific to a particular subject
- Overview is difficult to obtain

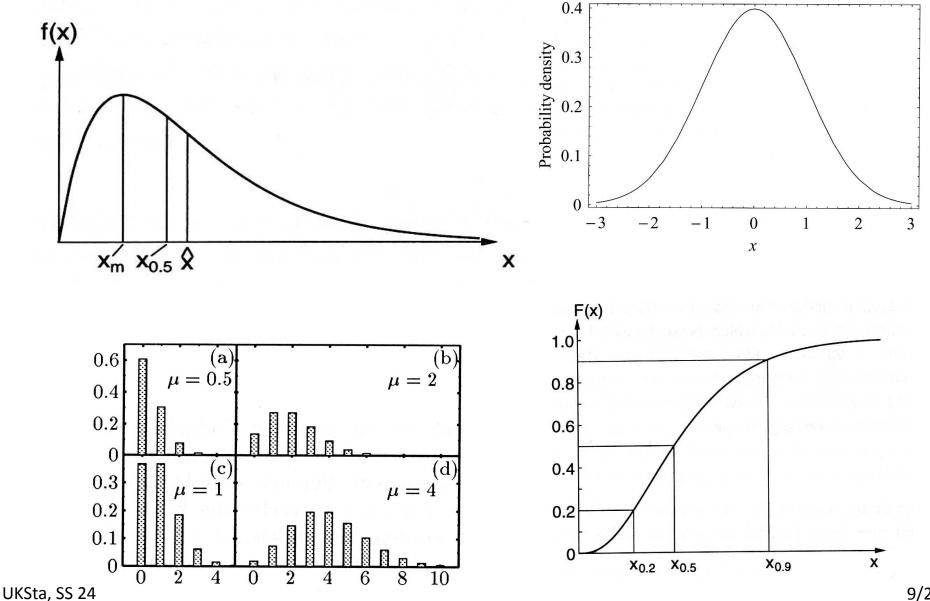
Course aims

Main aims:

- Learn basic concepts of statistics
- Learn how to use computational tools for (describing)/(analysing)/(inferences from) data
- Practical approach emphasized, only some theory
- Not a full fledged R-programming course (online https://www.coursera.org/course/rprog)

Side aims:

Learn how to work with Jupyter notebooks, handling files in a Unix-like environment (exporting? sharing?)


Course topics: probability

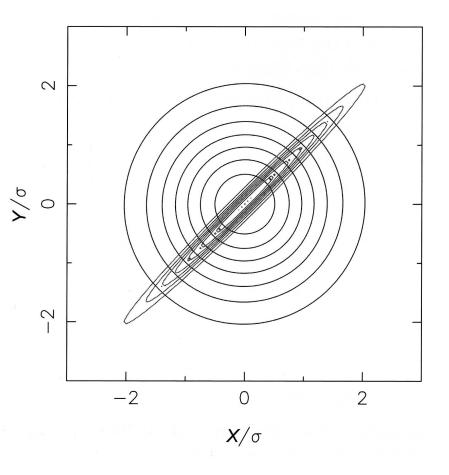
$$p := \frac{\text{number of favourable events}}{\text{total number of events}}$$
$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$
$$p(A|B) = \frac{p(A \text{ and } B)}{p(B)}$$

- (1) For a random event A, $0 \le p(A) \le 1$. (2) For the sure event A, p(A) = 1.
- (3) If A and B are exclusive events, then

$$p(\mathbf{A} \text{ or } \mathbf{B}) = p(\mathbf{A}) + p(\mathbf{B}).$$

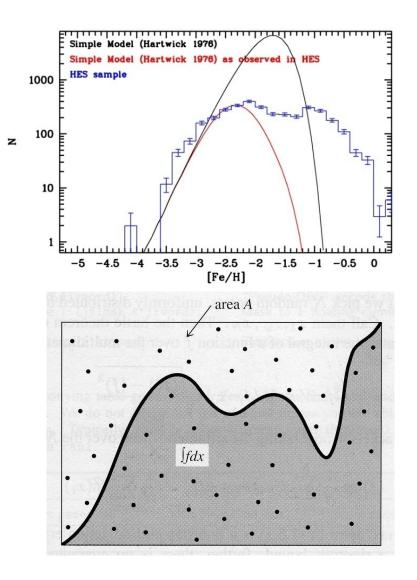
Course topics: probability distributions

9/29


Course topics: covariance and correlation

Consider measurements x_i and y_i of the variables x and y. The covariance σ_{xy} is related to to the correlation coefficient $\rho(x, y)$,

$$\rho(x,y) = \frac{\sigma_{xy}}{\sigma_x \sigma_y}.$$


It can be estimated by

$$\hat{\rho}(x,y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}.$$

Course topics: Monte Carlo methods

- Method of choice when statistical problems can not (easily) be solved analytically.
- Simulation of data sets;
 e.g. simulated
 measurements with
 uncertainties following a
 Gaussian distribution.
- Monte-Carlo integration.

Course topics: Parameter estimation

Let x_1, x_2, \ldots, x_n be measurements which follow the probability distribution f(x|a), where a is one or more free parameter(s). The likelihood function L(a) is defined as

$$L(a) = f(x_1|a) \cdot f(x_2|a) \cdots f(x_n|a) = \prod_{i=1}^n f(x_i|a).$$

L(a) is the probability for measuring the set of values x_1, x_2, \ldots, x_n , given the parameter(s) a and the probability distribution function f(x|a).

According to the maximum likelihood principle, the best estimate \hat{a} of a is the one which maximizes the likelihood function; i.e.,

$$L(a) \stackrel{!}{=}$$
maximum.

Course topics: Error propagation

We consider a transformation

$$y_i(x_1, x_2, \dots, x_n), \ i = 1 \dots m.$$

The law of error propagation is

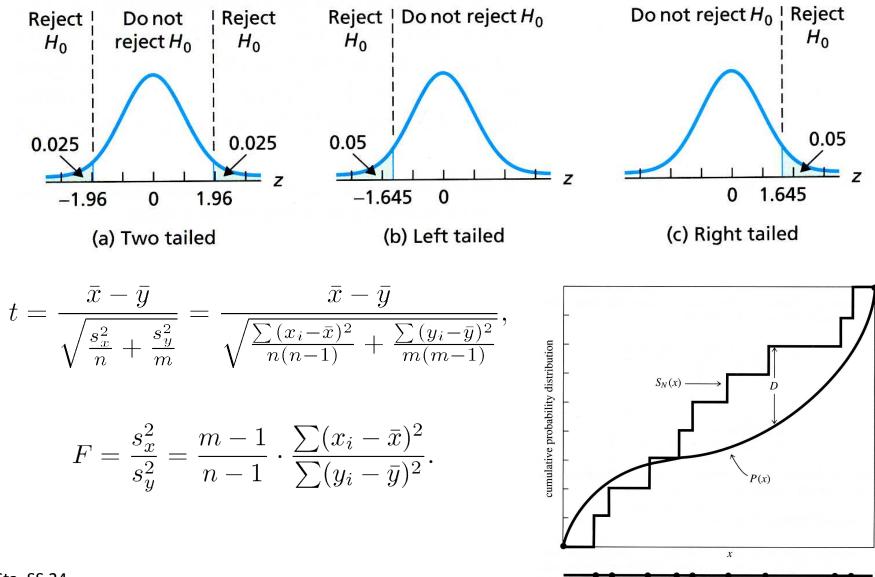
$$\mathbf{C}[\mathbf{y}] = \mathbf{B}\mathbf{C}[\mathbf{x}]\mathbf{B}^T,$$

where C[y] and C[x] are the covariance matrices for y and x, respectively, and

$$\mathbf{B} = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_n} \end{pmatrix}$$

Course topics: Linear regression

$$L(a,b) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{[y_i - (ax_i + b)]^2}{2\sigma_i^2}\right\}$$


$$l(a,b) = \text{const.} - \frac{1}{2\sigma^2} \sum_{i=1}^{n} [y_i - (ax_i + b)]^2.$$

$$a = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$$
$$b = \frac{1}{n} (\sum y_i - a \sum x_i)$$

Course topics: hypothesis testing

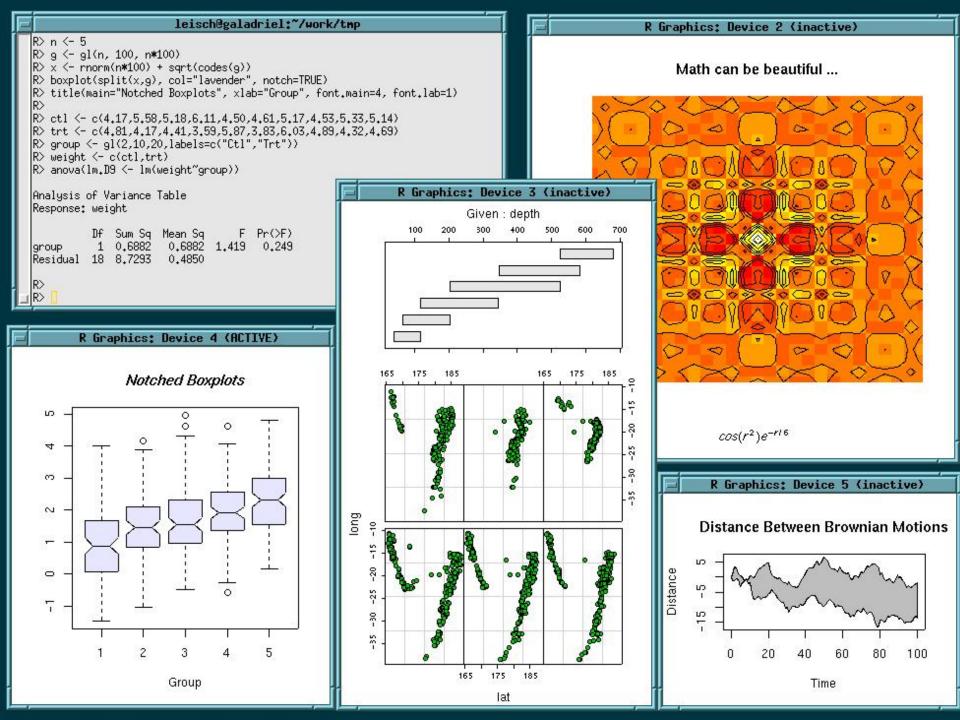
Test	H _o	Assumptions	Parameters	Test Statistic
Student's <i>t</i> test	μ _x = μ _y	Data is Gaussian	μ_x , μ_y , σ_x , σ_y	t
F test	$\sigma_x = \sigma_y$	Data is Gaussian	σ_x , σ_y	F
χ^2 test	Same parent distribution	(<i>O</i> _i - <i>E</i> _i)² is Gaussian	—	χ^2
KS test	Same parent distribution	—	—	D
<i>U</i> test	Same parent distribution	_	_	$U_{\text{A}}, U_{\text{B}}$
Spearman	Data is uncorrelated	—	_	r _s
Runs test	Data is random	_	_	r

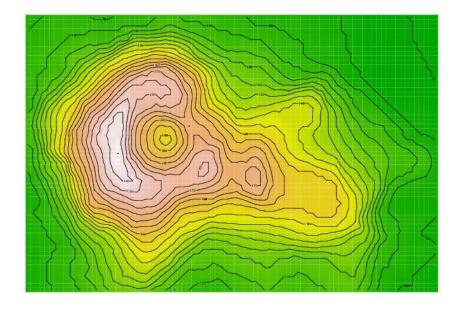
Course topics: hypothesis testing

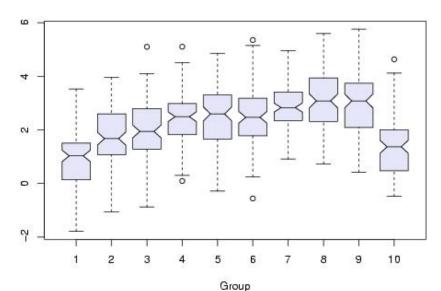
х

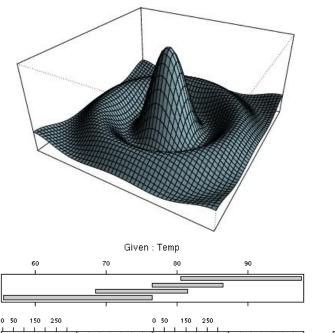
UKSta, SS 24

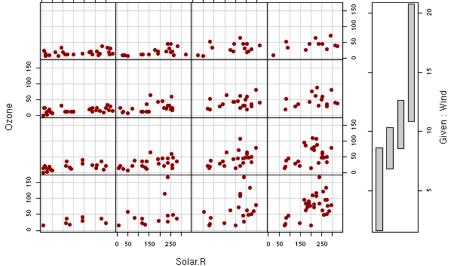
Bayesian methods


- Basic idea behind Bayesian approach
- The role of a prior
- Bayesian parameter estimation
- Bayesian model selection


J. Bayes.


R


- Programming language and environment for statistics and data analysis
- Platforms: Linux, MacOS X, Windows
- Published under GNU General Public License (GPL);
 i.e., freely available (see www.r-project.org)
- Command-line; interpreter
- Object oriented (will not play a big role)
- Own programs can easily be integrated
- Extensive statistics library but here a lot DIY
- Very powerful graphics package(s)



Graphics produced in **R**

UKSta, SS 24

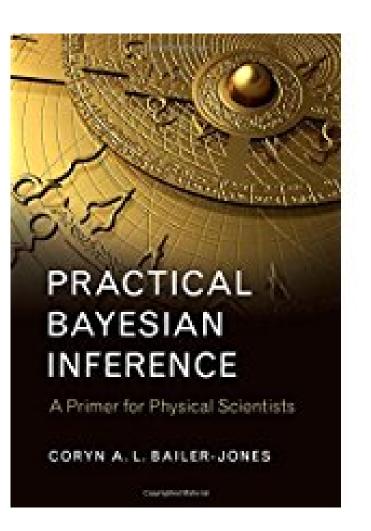
Preliminary course plan

5 Aug 6 Aug 7 Aug 8 Aug 9 Aug	Org.; running R, jupyter, markdown; R tutorial Probability; Probability distributions, more R Random numbers; Monte Carlo methods 1 Monte Carlo methods 2 Bootstrap, Maximum Entropy
13 Aug 14 Aug 15 Aug	Maximum Likelihood Estimation Bayesian parameter estimation Hypothesis testing 1 Hypothesis testing 2 EM procedure? Gaussian Processes?
	6 Aug 7 Aug 8 Aug 9 Aug 12 Aug 13 Aug 14 Aug 15 Aug

Course is under development! (Dauerbaustelle)

- Time management? Overlap between days?
- Feedback appreciated

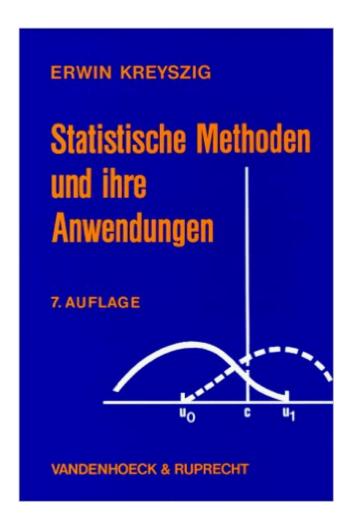
Course format

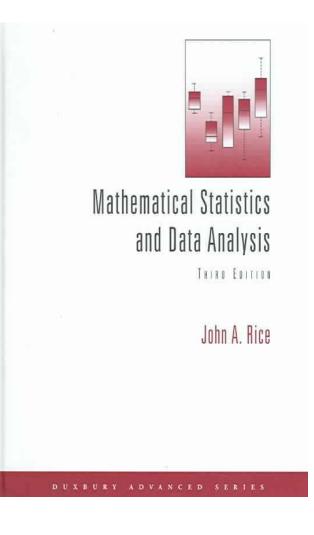

- Time: Mo/Tu/Th/Fr 9:00-13:00, break 10:45-11:15
- Presence is mandatory; exceptions have to be discussed with me in advance.
- 14:00-17:00 Work on assignments; up to 3 people
- The results of homework assignments have to be submitted in writing by 9:15 the next day as single PDF (in addition perhaps R-notebook) via Ü-system
- To pass the course and earn the 3 ECTS credit points, 60% of every homework assignment have to be solved in a satisfactory manner.
- In cases, work-over of unsatisfactory solutions

Resources

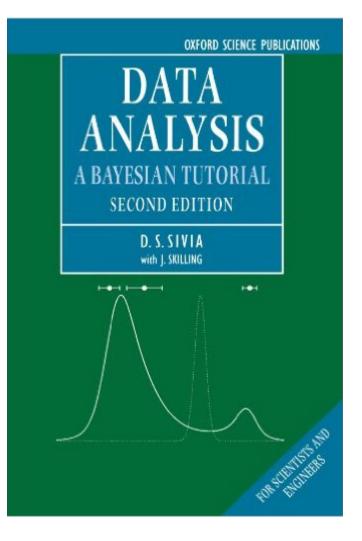
- Lecture slides on the web Note: lecture slides are not a script!
- Other handouts
- Online help pages and tutorials
- Course page with lecture material on the web
- Books

Coryn Bailer-Jones Practical Bayesian Inference: A Primer for Physical Scientists 1st edition, 2017 29€

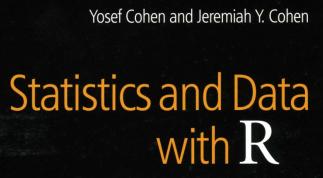

Very useful for the course. Some examples taken from the Book. Available online at UB Heidelberg.


R-scripts of the book can be found at the web site of Coryn Bailer-Jones: http://www2.mpia-hd.mpg.de/homes/calj/

Erwin Kreyszig, Statistische Methoden und ihre Anwendungen 7th edition, 1979 (!) 40 €


(in German only)

John A. Rice, Mathematical Statistics and Data Analysis 3th edition, 2007 26 €



Sivia & Skilling
Data Analysis: A Bayesian Tutorial
1st edition, 2006
30 €

R books

An Applied Approach Through Examples

ISBN 978-0-470-75805-2 63.99 €

Press/Teukolsky/Vetterling/Flannery *Numerical Recipes* Cambridge Univ. PreSS 2307 70 €

NUMERICAL RECIPES

The Art of Scientific Computing

THIRD EDITION

William H. Press Saul A. Teukolsky William T. Vetterling Brian P. Flannery

Further resources

- Coryn Bailer-Jones' lecture notes on Computational Statistics, outdated! (on course web page)
- Article by David Hogg et al. (2010): Data Analysis Recipes (on course web page)
- Reference Cards for R and Emacs (on course web page)
- R project online: www.r-project.org
- R project related quick reference: www.statmethods.net
- Wikipedia, in particular English pages!