next up previous
Next: The gaseous component Up: The star component Previous: Radial energy equation

Tangential energy equation

To conclude the set of equations of the star component with the interaction terms, we have the following equation:


\begin{displaymath}
\frac{\partial{p_{\rm t}}}{\partial {t}} + \frac{1}{r^2} \fr...
...ial}{\partial r}(r^2F_{\rm t})+\frac{2F_{\rm t}}{r}= \nonumber
\end{displaymath}  


\begin{displaymath}
\bigg( \frac{\delta p_{\rm t}}{\delta t}\bigg)_{\rm drag}+\bigg( \frac{\delta p_{\rm t}}
{\delta t}\bigg)_{\rm coll},
\end{displaymath} (36)

where
\begin{displaymath}
\bigg( \frac{\delta p_{\rm t}}{\delta t}\bigg)_{\rm drag}=-2...
...X_{\rm coll}
\rho_{\star} \tilde{\sigma_{\rm t}}^2 \epsilon.
\end{displaymath} (37)

We follow the same path like in the last case and so we get the following logarithmic variable equation:


$\displaystyle \frac{\partial \ln p_{\rm t}}{\partial t}+(u_{\star}+2v_{\rm t}) ...
...\partial}{\partial r}(u_{\star}+2v_{\rm t})+ \frac{4}{r}(u_{\star}+2v_{\rm t})-$     (38)
$\displaystyle \frac{4}{5} \frac{2\frac{p_{\rm r}}{p_{\rm t}}-1}{t_{\rm relax}}=...
...
\frac{1}{p_{\rm t}} \bigg( \frac{\delta p_{\rm t}} {\delta t}\bigg)_{\rm coll}$      



Pau Amaro-Seoane 2005-02-25