next up previous
Next: Momentum balance Up: The gaseous component Previous: The gaseous component

Equation of continuity

For the  the equation of continuity looks as follows:


\begin{displaymath}
\frac {\partial \rho_{\rm g}}{\partial { t}}+ \frac{1}{{\rm ...
...gg( \frac{\delta \rho_{\rm g}}
{\delta { t}} \bigg)_{\rm coll}
\end{displaymath} (39)

where, for the mass conservation, we have that, obviously,
\begin{displaymath}
\bigg( \frac{\delta \rho_{\rm g}}{\delta { t}} \bigg)_{\rm c...
...igg( \frac{\delta \rho_{\star}}{\delta { t}} \bigg)_{\rm coll}
\end{displaymath} (40)

We follow the same procedure as for the star continuity equation to get the equation in terms of the logarithmic variables:


\begin{displaymath}
\frac{\partial \ln \rho_{\rm g}}{\partial t} + \frac{\partia...
...( \frac{\delta \rho_{\rm g}}{\delta {\rm t}} \bigg)_{\rm coll}
\end{displaymath} (41)

The interaction term is in this case


\begin{displaymath}
\frac{1}{\rho_{\rm g}}\bigg( \frac{\delta \rho_{\rm g}}{\del...
...rm t}} \bigg)
= -\frac{\rho_{\star}}{\rho_{\rm g}}X_{\rm coll}
\end{displaymath} (42)



Pau Amaro-Seoane 2005-02-25