next up previous
Next: Radiation transfer Up: The gaseous component Previous: Equation of continuity

Momentum balance

We modify equation number (2.9) of LangbeinEtAl90 in the following way:

\begin{displaymath}
\frac{\partial (\rho_{\rm g}u_{\rm g})}{\partial t}=u_{\rm g...
...artial t}+
\rho_{\rm g} \frac{\partial u_{\rm g}}{\partial t};
\end{displaymath} (43)

we substitute this equality in their equation, divide by $\rho_{\rm g}$ ($u_{\rm g}$ is the variable in our code) and make use of the equation of continuity for the gas component. Thus, we get the following expression:
\begin{displaymath}
\frac{\partial u_{\rm g}}{\partial t}+u_{\rm g} \frac{\parti...
...H=
\bigg( \frac{\delta u_{\rm g}}{\delta t}\bigg)_{\rm coll}
\end{displaymath} (44)

To get the interaction term we use the mass and momentum conservation:
\begin{displaymath}
\bigg( \frac{\delta \rho_{\rm g}}{\delta t}\bigg)_{\rm coll}...
...ac{\delta \rho_{\star}}{\delta t}\bigg)_{\rm coll}=0 \nonumber
\end{displaymath}  


\begin{displaymath}
\bigg( \frac{\delta (\rho_{\rm g} u_{\rm g})}{\delta t}\bigg...
...\delta (\rho_{\star} u_{\star})}{\delta t}\bigg)_{\rm coll}=0.
\end{displaymath} (45)

We know that
\begin{displaymath}
\bigg( \frac{\delta u_{\star}}{\delta t}\bigg)_{\rm coll}=0,
\end{displaymath} (46)

thus,
\begin{displaymath}
\bigg( \frac{\delta (\rho_{\rm g} u_{\rm g})}{\delta t}\bigg...
...lta t}\bigg)_{\rm coll} + u_{\rm g} X_{\rm coll} \rho_{\star}.
\end{displaymath} (47)

Therefore, the resulting interaction term is
\begin{displaymath}
\bigg( \frac{\delta u_{\rm g}}{\delta t}\bigg)_{\rm coll}= \...
...\rho_{\star}}{\rho_{\rm g}}
X_{\rm coll}(u_{\star}-u_{\rm g})
\end{displaymath} (48)

In the case of the stellar system
\begin{displaymath}
F= \frac{1}{2}(F_{\rm r}+F_{\rm t})=\frac{5}{2}\rho_{\star}v_{\star}
\end{displaymath} (49)

By analogy, we now introduce $F_{\rm rad}$ in this way
\begin{displaymath}
\frac{F_{\rm rad}}{4\pi}=H=\frac{5}{2}p_{\rm g}v_{\rm g},
\end{displaymath} (50)

where $v_{\rm g}$ is per gas particle.
\begin{displaymath}
v_{\rm g}=\frac{2}{5} \frac{H}{p_{\rm g}}
\end{displaymath} (51)

As means to write the equation in its ``logarithmic variable version'', we multiply the equation by $\rho_{\rm g} r /p_{\rm g}$, as we did for the corresponding momentum balance star equation and replace $H$ by $5/2p_{\rm g}v_{\rm g}$,

$\displaystyle \frac{\rho_{\rm g}r}{p_{\rm g}} \bigg( \frac{\partial u_{\rm g}}{...
...\partial \ln r}-\frac{5}{2} \frac{\kappa_{\rm ext}}{c}
\rho_{\rm g}r v_{\rm g}=$      
$\displaystyle \frac{r}{p_{\rm g}} \rho_{\star}X_{\rm coll} (u_{\star}-u_{\rm g})$     (52)


next up previous
Next: Radiation transfer Up: The gaseous component Previous: Equation of continuity
Pau Amaro-Seoane 2005-02-25