next up previous
Next: Thermal energy conservation Up: The gaseous component Previous: Momentum balance

Radiation transfer

We extend here and improve the work done by LangbeinEtAl90 by resorting to a more detailed description of the radiation transfer Castor72.

Consider a radiation field; we place a surface element $d \sigma$ with a surface normal ${\bf n}$, see Fig.(2.1); the radiation energy which passes through $d \sigma$ per unit time at angle $\theta $ to ${\bf n}$ within a small range of solid angle $d \omega$ given by the directional angles $\theta $ and $\phi$ is

\begin{displaymath}
dE=I_{\nu}(\theta, \phi) \mu d\nu d \sigma d \omega
\end{displaymath} (53)

where $\mu = \cos \theta$.

The radiation intensity $I_{\nu}(\theta, \phi)$ is defined as the amount of energy that passes through a surface normal to the direction ($\theta $,$\phi$) per unit solid angle (1 steradian) and unit frequency range (1 Hz) in one second. The intensity of the total radiation is given by integrating over all frequencies,

\begin{displaymath}
I=\int_{0}^{\infty} I_{\nu}d \nu
\end{displaymath} (54)

Figure 2.1: Radiation intensity definition
\begin{figure}\begin{center}
\leavevmode
\epsfxsize=6cm
\epsfysize=7cm
\epsffile{diag_th_model/rad2.ps}
\end{center}\end{figure}

The three radiation moments (the moments of order zero, one and two) are defined by:

  $\textstyle J=$ $\displaystyle \int_{0}^{\infty} J_{\nu} d{\nu}=\int_{0}^{\infty} d{\nu} \frac{1}{2} \int_{-1}^{+1}
I_{\nu} d{\mu}$  
  $\textstyle H=$ $\displaystyle \int_{0}^{\infty} H_{\nu} d{\nu}=\int_{0}^{\infty} d{\nu} \frac{1}{2} \int_{-1}^{+1}
I_{\nu} \mu d{\mu}$ (55)
  $\textstyle K=$ $\displaystyle \int_{0}^{\infty} K_{\nu} d{\nu}=\int_{0}^{\infty} d{\nu} \frac{1}{2} \int_{-1}^{+1}
I_{\nu} \mu^2 d{\mu},$  

The moment of order zero is related to the density of energy of the field of radiation $E_{\rm rad}$, the moment of order one to the flux of radiation $F_{\rm rad}$ and the moment of order one to the radiation pressure $p_{\rm rad}$,
  $\textstyle E_{\rm rad}=$ $\displaystyle \frac{4\pi}{c}J$  
  $\textstyle F_{\rm rad}=$ $\displaystyle 4\pi H$ (56)
  $\textstyle p_{\rm rad}=$ $\displaystyle \frac{4 \pi}{c}K$  

The transfer of radiation in a spherically symmetric moving medium is considered taking into account the contributions which are of the order of the flow velocity divided by the velocity of light; we include also the variation from the centre up to the atmosphere of the Eddington factor $f_{\rm Edd}=K/J$, where $K$ and $J$ are the radiation moments; $f_{\rm Edd}$ is obtained from a numerical solution of the equation of radiation transfer in spherical geometry Yorke80. We get the radiation transfer equations by re-writing the frequency-integrated moment equations from Castor72:


$\displaystyle {\frac{1}{c} \frac{\partial J}{\partial t}+ \frac{\partial H}{\pa...
...g}- \frac {J(1+f_{\rm Edd})}{c}
\frac {\partial \ln \rho_{\rm g}}{\partial t}=}$      
$\displaystyle \kappa_{\rm abs}(B-J)$     (57)


$\displaystyle \frac{1}{c} \frac{\partial H}{\partial t}+\frac{\partial (J f_{\r...
...ac{2u_{\rm g}}{cr} H-\frac{2}{c}\frac{\partial
\ln \rho_{\rm g}}{\partial t} H=$      
$\displaystyle -\kappa_{\rm ext} \rho_{\rm g} H$     (58)

In the equations $\kappa_{\rm abs}$ and $\kappa_{\rm ext}$ are the absorption and extinction coefficients per unit mass


\begin{displaymath}
\kappa_{\rm abs}=\frac{\rho_{\rm g} \Lambda(T)}{B},~
\kappa_{\rm ext}=\rho_{\rm g}(\kappa_{\rm abs}+\kappa_{\rm scatt}),
\end{displaymath} (59)

$\Lambda(T)$ is the cooling function, $B$ the Planck function and $\kappa_{\rm scatt}$ the scattering coefficient per unit mass. We have made use of $\partial M_{\rm r}/ \partial
r=4 \pi^2 \rho$, $f_{\rm Edd}=K/J$, and the Kirchhoff's law, $B_{\nu}=j_{\nu}/\kappa_{\nu}$ ($j_{\nu}$ is the emission coefficient), so that the right-hand terms in Castor72 are the corresponding given here.

We now look for the logarithmic variable version of both equations; for this aim, we divide Eq.(2.63) by $J$ and multiply Eq.(2.64) by $2c/(5p_{\rm g}v_{\rm g})$,

$\displaystyle \frac{1}{c}\frac{\partial \ln J}{\partial t}+\frac{5}{2J}\frac{\p...
...ac{5}{Jr}p_{\rm g}v_{\rm g}-\frac{3f_{\rm Edd}-1}{cr}u_{\rm g}
-(1+f_{\rm Edd})$      
$\displaystyle \frac{1}{c}\frac{\partial \ln \rho_{\rm g}} {\partial t}=
\frac{\kappa_{\rm abs}}{J} (B-J)$     (60)


$\displaystyle \frac{\partial \ln v_{\rm g}}{\partial t}+\frac{\partial \ln p_{\...
...}+
\frac{2c}{5}\frac{3f_{\rm Edd}-1}{rp_{\rm g}v_{\rm g}}J-\frac{2u_{\rm g}}{r}$      
$\displaystyle -2\frac{\partial \ln \rho_{\rm g}}{\partial t}= -c \kappa_{\rm ext}\rho_{\rm g}$     (61)

Where we have substituted $H=5p_{\rm g}v_{\rm g}/2$.


next up previous
Next: Thermal energy conservation Up: The gaseous component Previous: Momentum balance
Pau Amaro-Seoane 2005-02-25